revert model

This commit is contained in:
FilippoOlivo
2025-10-07 17:01:15 +02:00
parent 1498bfd55d
commit b9335cd2f8

View File

@@ -59,92 +59,40 @@ class DecX(nn.Module):
return self.net(x)
# class ConditionalGNOBlock(MessagePassing):
# def __init__(self, hidden_ch, edge_ch=0, aggr="mean"):
# super().__init__(aggr=aggr, node_dim=0)
# self.edge_attr_net = nn.Sequential(
# nn.Linear(edge_ch, hidden_ch // 2),
# nn.SiLU(),
# nn.Linear(hidden_ch // 2, 1),
# nn.Softplus()
# )
# self.diff_net = nn.Sequential(
# nn.Linear(hidden_ch, hidden_ch),
# nn.SiLU(),
# nn.Linear(hidden_ch, hidden_ch),
# )
# # self.x_net = nn.Sequential(
# # nn.Linear(hidden_ch, hidden_ch),
# # nn.SiLU(),
# # nn.Linear(hidden_ch, hidden_ch),
# # )
# self.c_ij_net = nn.Sequential(
# nn.Linear(hidden_ch, hidden_ch // 2),
# nn.SiLU(),
# nn.Linear(hidden_ch // 2, 1),
# nn.Sigmoid(),
# )
# # self.gamma_net = nn.Sequential(
# # nn.Linear(2 * hidden_ch, hidden_ch),
# # nn.SiLU(),
# # nn.Linear(hidden_ch, hidden_ch // 2),
# # nn.SiLU(),
# # nn.Linear(hidden_ch // 2, 1),
# # nn.Sigmoid(),
# # )
# self.alpha_net = nn.Sequential(
# nn.Linear(2 * hidden_ch, hidden_ch),
# nn.SiLU(),
# nn.Linear(hidden_ch, hidden_ch // 2),
# nn.SiLU(),
# nn.Linear(hidden_ch // 2, 1),
# nn.Sigmoid(),
# )
# def forward(self, x, c, edge_index, edge_attr=None):
# return self.propagate(edge_index, x=x, c=c, edge_attr=edge_attr)
# def message(self, x_i, x_j, c_i, c_j, edge_attr):
# c_ij = 0.5 * (c_i + c_j)
# # gamma = self.gamma_net(torch.cat([x_i, x_j], dim=-1))
# # gate = torch.sself.edge_attr_net(edge_attr))
# gate = self.edge_attr_net(edge_attr)
# # m = (
# # gamma * self.diff_net(x_j - x_i) + (1 - gamma) * self.x_net(x_j)
# # ) * gate
# m = self.diff_net(x_j - x_i) * gate
# m = m * self.c_ij_net(c_ij)
# return m
# def update(self, aggr_out, x):
# alpha = self.alpha_net(torch.cat([x, aggr_out], dim=-1))
# return x + alpha * aggr_out
class ConditionalGNOBlock(MessagePassing):
def __init__(self, hidden_ch, edge_ch=0, aggr="mean"):
super().__init__(aggr=aggr, node_dim=0)
self.edge_ch = edge_ch
# Rete che mappa edge_attr -> coefficiente scalare (log-scale)
# Se edge_ch==0 useremo un coefficiente apprendibile globale
self.edge_attr_net = nn.Sequential(
nn.Linear(edge_ch, hidden_ch),
nn.GELU(),
nn.Linear(hidden_ch, hidden_ch // 2),
nn.Linear(edge_ch, hidden_ch // 2),
nn.GELU(),
nn.Linear(hidden_ch // 2, 1),
nn.Softplus(),
)
# gating dalla condizione c_ij (restituisce scalar in (0,1))
self.diff_net = nn.Sequential(
nn.Linear(hidden_ch, hidden_ch * 2),
nn.GELU(),
nn.Linear(hidden_ch * 2, hidden_ch),
nn.GELU(),
)
self.x_net = nn.Sequential(
nn.Linear(hidden_ch, hidden_ch * 2),
nn.GELU(),
nn.Linear(hidden_ch * 2, hidden_ch),
nn.GELU(),
)
self.c_ij_net = nn.Sequential(
nn.Linear(hidden_ch, hidden_ch),
nn.Linear(hidden_ch, hidden_ch // 2),
nn.GELU(),
nn.Linear(hidden_ch // 2, 1),
nn.Sigmoid(),
)
self.gamma_net = nn.Sequential(
nn.Linear(2 * hidden_ch, hidden_ch),
nn.GELU(),
nn.Linear(hidden_ch, hidden_ch // 2),
nn.GELU(),
@@ -152,7 +100,6 @@ class ConditionalGNOBlock(MessagePassing):
nn.Sigmoid(),
)
# alpha per passo (clampato tramite sigmoid)
self.alpha_net = nn.Sequential(
nn.Linear(2 * hidden_ch, hidden_ch),
nn.GELU(),
@@ -162,43 +109,23 @@ class ConditionalGNOBlock(MessagePassing):
nn.Sigmoid(),
)
self.diff_net = nn.Sequential(
nn.Linear(hidden_ch, hidden_ch * 2),
nn.GELU(),
nn.Linear(hidden_ch * 2, hidden_ch**2),
nn.GELU(),
nn.Linear(hidden_ch**2, hidden_ch),
nn.GELU(),
)
# self.norm = nn.LayerNorm(hidden_ch)
def forward(self, x, c, edge_index, edge_attr=None):
# chiamiamo propagate; edge_attr può essere None
return self.propagate(edge_index, x=x, c=c, edge_attr=edge_attr)
def message(self, x_i, x_j, c_i, c_j, edge_attr):
"""
Implementazione diffusiva:
m_ij = w_ij * (x_j - x_i) * c_gate_ij
dove w_ij = softplus(edge_attr_net(edge_attr)) >= 0
"""
c_ij = 0.5 * (c_i + c_j) # [E, H]
c_gate = self.c_ij_net(c_ij) # [E, 1] in (0,1)
w_raw = self.edge_attr_net(edge_attr) # [E,1]
w = w_raw + 1e-8
diff = x_j - x_i # [E, H]
m = w * self.diff_net(diff) + diff # [E,H]
m = m * c_gate # [E,H]
c_ij = 0.5 * (c_i + c_j)
gamma = self.gamma_net(torch.cat([x_i, x_j], dim=-1))
gate = self.edge_attr_net(edge_attr)
m = (
gamma * self.diff_net(x_j - x_i) + (1 - gamma) * self.x_net(x_j)
) * gate
m = self.diff_net(x_j - x_i) * gate
m = m * self.c_ij_net(c_ij)
return m
def update(self, aggr_out, x):
"""
TODO: doc
"""
alpha = self.alpha_net(torch.cat([x, aggr_out], dim=-1))
x_new = x + alpha * aggr_out
return x_new
return x + alpha * aggr_out
class GatingGNO(nn.Module):
@@ -225,8 +152,6 @@ class GatingGNO(nn.Module):
self,
x,
c,
boundary,
boundary_mask,
edge_index,
edge_attr=None,
unrolling_steps=1,