add datamodule

This commit is contained in:
Filippo Olivo
2025-09-23 09:44:21 +02:00
parent 6fa720e2e8
commit c2d6937bfc
2 changed files with 103 additions and 0 deletions

View File

@@ -0,0 +1,90 @@
import torch
from tqdm import tqdm
from lightning import LightningDataModule
from datasets import load_dataset
from torch_geometric.data import Data
from torch_geometric.loader import DataLoader
class GraphDataModule(LightningDataModule):
def __init__(
self,
hf_repo: str,
split_name: str,
train_size: float = 0.8,
val_size: float = 0.1,
test_size: float = 0.1,
batch_size: int = 32,
):
super().__init__()
self.hf_repo = hf_repo
self.split_name = split_name
self.dataset = None
self.geometry = None
self.train_size = train_size
self.val_size = val_size
self.test_size = test_size
self.batch_size = batch_size
def prepare_data(self):
hf_dataset = load_dataset(self.hf_repo, name="snapshots")[
self.split_name
]
self.geometry = load_dataset(self.hf_repo, name="geometry")[
self.split_name
]
edge_index = torch.tensor(
self.geometry["edge_index"][0], dtype=torch.int32
)
pos = torch.tensor(self.geometry["points"][0], dtype=torch.float32)[
:, :2
]
self.data = [
self._build_dataset(
torch.tensor(snapshot["conductivity"], dtype=torch.float32),
torch.tensor(snapshot["boundary_values"], dtype=torch.float32),
torch.tensor(snapshot["temperature"], dtype=torch.float32),
edge_index.T,
pos,
)
for snapshot in tqdm(hf_dataset, desc="Building graphs")
]
def _build_dataset(
self, conductivity, boundary_vales, temperature, edge_index, pos
):
input_ = torch.stack([conductivity, boundary_vales], dim=1)
edge_attr = pos[edge_index[0]] - pos[edge_index[1]]
edge_attr = torch.cat(
[edge_attr, torch.norm(edge_attr, dim=1).unsqueeze(-1)], dim=1
)
return Data(
x=input_,
edge_index=edge_index,
pos=pos,
edge_attr=edge_attr,
y=temperature,
)
def setup(self, stage=None):
n = len(self.data)
train_end = int(n * self.train_size)
val_end = train_end + int(n * self.val_size)
if stage == "fit" or stage is None:
self.train_data = self.data[:train_end]
self.val_data = self.data[train_end:val_end]
if stage == "test" or stage is None:
self.test_data = self.data[val_end:]
def train_dataloader(self):
return DataLoader(
self.train_data, batch_size=self.batch_size, shuffle=True
)
def val_dataloader(self):
return DataLoader(self.val_data, batch_size=self.batch_size)
def test_dataloader(self):
return DataLoader(self.test_data, batch_size=self.batch_size)

13
tests/test_datamodule.py Normal file
View File

@@ -0,0 +1,13 @@
from ThermalSolver.data_module import GraphDataModule
def test_graph_data_module():
data_module = GraphDataModule(
hf_repo="SISSAmathLab/thermal-conduction",
split_name="pytest",
train_size=0.8,
val_size=0.1,
test_size=0.1,
batch_size=32,
)
data_module.prepare_data()
data_module.setup("fit")