add model and fix module and datamodule
This commit is contained in:
@@ -14,36 +14,40 @@ def import_class(class_path: str):
|
||||
return cls
|
||||
|
||||
|
||||
def _plot_mesh(pos, y, y_pred, y_true ,batch, i, batch_idx):
|
||||
|
||||
idx = batch == 0
|
||||
y = y[idx].detach().cpu()
|
||||
y_pred = y_pred[idx].detach().cpu()
|
||||
pos = pos[idx].detach().cpu()
|
||||
y_true = y_true[idx].detach().cpu()
|
||||
# print(torch.max(y_true), torch.min(y_true))
|
||||
folder = f"{batch_idx:02d}_images"
|
||||
if os.path.exists(folder) is False:
|
||||
os.makedirs(folder)
|
||||
pos = pos.detach().cpu()
|
||||
tria = Triangulation(pos[:, 0], pos[:, 1])
|
||||
plt.figure(figsize=(18, 5))
|
||||
plt.subplot(1, 3, 1)
|
||||
plt.tricontourf(tria, y.squeeze().numpy(), levels=14)
|
||||
plt.colorbar()
|
||||
plt.title("Step t-1")
|
||||
plt.subplot(1, 3, 2)
|
||||
plt.tricontourf(tria, y_pred.squeeze().numpy(), levels=14)
|
||||
plt.colorbar()
|
||||
plt.title("Step t Predicted")
|
||||
plt.subplot(1, 3, 3)
|
||||
plt.tricontourf(tria, y_true.squeeze().numpy(), levels=14)
|
||||
plt.colorbar()
|
||||
plt.title("t True")
|
||||
plt.suptitle("GNO", fontsize=16)
|
||||
name = f"{folder}/graph_iter_{i:04d}.png"
|
||||
plt.savefig(name, dpi=72)
|
||||
plt.close()
|
||||
def _plot_mesh(pos_, y_, y_pred_, y_true_ ,batch, i, batch_idx):
|
||||
for j in [0, 10, 20, 30]:
|
||||
idx = (batch == j).nonzero(as_tuple=True)[0]
|
||||
y = y_[idx].detach().cpu()
|
||||
y_pred = y_pred_[idx].detach().cpu()
|
||||
pos = pos_[idx].detach().cpu()
|
||||
y_true = y_true_[idx].detach().cpu()
|
||||
y_true = torch.clamp(y_true, min=0)
|
||||
folder = f"{j:02d}_images"
|
||||
if os.path.exists(folder) is False:
|
||||
os.makedirs(folder)
|
||||
pos = pos.detach().cpu()
|
||||
tria = Triangulation(pos[:, 0], pos[:, 1])
|
||||
plt.figure(figsize=(24, 5))
|
||||
plt.subplot(1, 4, 1)
|
||||
plt.tricontourf(tria, y.squeeze().numpy(), levels=100)
|
||||
plt.colorbar()
|
||||
plt.title("Step t-1")
|
||||
plt.subplot(1, 4, 2)
|
||||
plt.tricontourf(tria, y_pred.squeeze().numpy(), levels=100)
|
||||
plt.colorbar()
|
||||
plt.title("Step t Predicted")
|
||||
plt.subplot(1, 4, 3)
|
||||
plt.tricontourf(tria, y_true.squeeze().numpy(), levels=100)
|
||||
plt.colorbar()
|
||||
plt.title("t True")
|
||||
plt.subplot(1, 4, 4)
|
||||
plt.tricontourf(tria, (y_true - y_pred).squeeze().numpy(), levels=100)
|
||||
plt.colorbar()
|
||||
plt.title("Error")
|
||||
plt.suptitle("GNO", fontsize=16)
|
||||
name = f"{folder}/{j:04d}_graph_iter_{i:04d}.png"
|
||||
plt.savefig(name, dpi=72)
|
||||
plt.close()
|
||||
|
||||
def _plot_losses(losses, batch_idx):
|
||||
folder = f"{batch_idx:02d}_images"
|
||||
@@ -65,33 +69,15 @@ class GraphSolver(LightningModule):
|
||||
model_class_path: str,
|
||||
model_init_args: dict = {},
|
||||
loss: torch.nn.Module = None,
|
||||
start_unrolling_steps: int = 1,
|
||||
increase_every: int = 20,
|
||||
increase_rate: float = 2,
|
||||
max_unrolling_steps: int = 100,
|
||||
max_inference_iters: int = 1000,
|
||||
inner_steps: int = 16,
|
||||
unrolling_steps: int = 1,
|
||||
):
|
||||
super().__init__()
|
||||
self.model = import_class(model_class_path)(**model_init_args)
|
||||
# for param in self.model.parameters():
|
||||
# print(f"Param: {param.shape}, Grad: {param.grad}")
|
||||
# print(f"Param: {param[0]}")
|
||||
self.fd_net = FiniteDifferenceStep()
|
||||
self.loss = loss if loss is not None else torch.nn.MSELoss()
|
||||
self.start_unrolling = start_unrolling_steps
|
||||
self.current_unrolling_steps = self.start_unrolling
|
||||
self.increase_every = increase_every
|
||||
self.increase_rate = increase_rate
|
||||
self.max_unrolling_steps = max_unrolling_steps
|
||||
self.max_inference_iters = max_inference_iters
|
||||
self.threshold = 1e-4
|
||||
self.inner_steps = inner_steps
|
||||
|
||||
def _compute_deg(self, edge_index, edge_attr, num_nodes):
|
||||
deg = torch.zeros(num_nodes, device=edge_index.device)
|
||||
deg = deg.scatter_add(0, edge_index[1], edge_attr)
|
||||
return deg + 1e-7
|
||||
self.unrolling_steps = unrolling_steps
|
||||
|
||||
def _compute_loss(self, x, y):
|
||||
return self.loss(x, y)
|
||||
@@ -100,7 +86,7 @@ class GraphSolver(LightningModule):
|
||||
self.log(
|
||||
f"{stage}/loss",
|
||||
loss,
|
||||
on_step=True,
|
||||
on_step=False,
|
||||
on_epoch=True,
|
||||
prog_bar=True,
|
||||
batch_size=int(batch.num_graphs),
|
||||
@@ -116,19 +102,12 @@ class GraphSolver(LightningModule):
|
||||
|
||||
def _compute_model_steps(
|
||||
self, x, edge_index, edge_attr, boundary_mask, boundary_values
|
||||
):
|
||||
|
||||
out = x + self.model(x, edge_index, edge_attr)
|
||||
# out[boundary_mask] = boundary_values.unsqueeze(-1)
|
||||
plt.figure()
|
||||
):
|
||||
out = self.model(x, edge_index, edge_attr)
|
||||
out[boundary_mask] = boundary_values.unsqueeze(-1)
|
||||
# print(torch.min(out), torch.max(out))
|
||||
return out
|
||||
|
||||
def _check_convergence(self, out, x):
|
||||
residual_norm = torch.norm(out - x)
|
||||
if residual_norm < self.threshold * torch.norm(x):
|
||||
return True
|
||||
return False
|
||||
|
||||
def _preprocess_batch(self, batch: Batch):
|
||||
x, y, c, edge_index, edge_attr = (
|
||||
batch.x,
|
||||
@@ -137,9 +116,10 @@ class GraphSolver(LightningModule):
|
||||
batch.edge_index,
|
||||
batch.edge_attr,
|
||||
)
|
||||
# edge_attr = 1 / edge_attr
|
||||
edge_attr = 1 / edge_attr
|
||||
c_ij = self._compute_c_ij(c, edge_index)
|
||||
edge_attr = edge_attr * (c_ij) # / 100)
|
||||
edge_attr = edge_attr * c_ij
|
||||
# edge_attr = edge_attr / torch.max(edge_attr)
|
||||
return x, y, edge_index, edge_attr
|
||||
|
||||
def training_step(self, batch: Batch):
|
||||
@@ -171,75 +151,35 @@ class GraphSolver(LightningModule):
|
||||
# plt.scatter(pos[boundary_mask,0].cpu(), pos[boundary_mask,1].cpu(), c=boundary_values.cpu(), s=1)
|
||||
# plt.savefig("boundary_nodes.png", dpi=300)
|
||||
# y = z
|
||||
print(y.shape)
|
||||
for i in range(self.current_unrolling_steps * self.inner_steps):
|
||||
scale = 50
|
||||
for i in range(self.unrolling_steps):
|
||||
out = self._compute_model_steps(
|
||||
# torch.cat([x,pos], dim=-1),
|
||||
x,
|
||||
edge_index,
|
||||
edge_attr,
|
||||
# deg,
|
||||
batch.boundary_mask,
|
||||
batch.boundary_values,
|
||||
x,
|
||||
edge_index,
|
||||
edge_attr,
|
||||
# deg,
|
||||
batch.boundary_mask,
|
||||
batch.boundary_values,
|
||||
)
|
||||
x = out
|
||||
# print(out.shape, y[:, i, :].shape)
|
||||
losses.append(self.loss(out.flatten(), y[:, i, :].flatten()))
|
||||
# print(self.model.scale_edge_attr.item())
|
||||
|
||||
print(losses)
|
||||
|
||||
loss = torch.stack(losses).mean()
|
||||
# for param in self.model.parameters():
|
||||
# print(f"Param: {param.shape}, Grad: {param.grad}")
|
||||
# print(f"Param: {param[0]}")
|
||||
self._log_loss(loss, batch, "train")
|
||||
return loss
|
||||
|
||||
# def on_train_epoch_start(self):
|
||||
# print(f"Current unrolling steps: {self.current_unrolling_steps}, dataset unrolling steps: {self.trainer.datamodule.train_dataset.unrolling_steps}")
|
||||
# return super().on_train_epoch_start()
|
||||
|
||||
def on_train_epoch_end(self):
|
||||
if (
|
||||
(self.current_epoch + 1) % self.increase_every == 0
|
||||
and self.current_epoch > 0
|
||||
):
|
||||
dm = self.trainer.datamodule
|
||||
self.current_unrolling_steps = min(
|
||||
int(self.current_unrolling_steps * self.increase_rate),
|
||||
self.max_unrolling_steps
|
||||
)
|
||||
dm.unrolling_steps = self.current_unrolling_steps
|
||||
return super().on_train_epoch_end()
|
||||
|
||||
def validation_step(self, batch: Batch, _):
|
||||
# x, y, edge_index, edge_attr = self._preprocess_batch(batch)
|
||||
|
||||
# deg = self._compute_deg(edge_index, edge_attr, x.size(0))
|
||||
# for i in range(self.max_inference_iters * self.inner_steps):
|
||||
# out = self._compute_model_steps(
|
||||
# x,
|
||||
# edge_index,
|
||||
# edge_attr,
|
||||
# deg,
|
||||
# batch.boundary_mask,
|
||||
# batch.boundary_values,
|
||||
# )
|
||||
# converged = self._check_convergence(out, x)
|
||||
# x = out
|
||||
# if converged:
|
||||
# break
|
||||
# print(y.shape, out.shape)
|
||||
# loss = self.loss(out, y[:,-1,:])
|
||||
# self._log_loss(loss, batch, "val")
|
||||
# self.log("val/iterations", i + 1, on_step=False, on_epoch=True, prog_bar=True, batch_size=int(batch.num_graphs),)
|
||||
# return loss
|
||||
|
||||
def validation_step(self, batch: Batch, batch_idx):
|
||||
x, y, edge_index, edge_attr = self._preprocess_batch(batch)
|
||||
# deg = self._compute_deg(edge_index, edge_attr, x.size(0))
|
||||
losses = []
|
||||
pos = batch.pos
|
||||
for i in range(self.current_unrolling_steps * self.inner_steps):
|
||||
for i in range(self.unrolling_steps):
|
||||
out = self._compute_model_steps(
|
||||
# torch.cat([x,pos], dim=-1),
|
||||
x,
|
||||
@@ -249,50 +189,18 @@ class GraphSolver(LightningModule):
|
||||
batch.boundary_mask,
|
||||
batch.boundary_values,
|
||||
)
|
||||
_plot_mesh(batch.pos, x, out, y[:, i, :], batch.batch, i, self.current_epoch)
|
||||
if (batch_idx == 0 and self.current_epoch % 10 == 0 and self.current_epoch > 20):
|
||||
_plot_mesh(batch.pos, x, out, y[:, i, :], batch.batch, i, self.current_epoch)
|
||||
x = out
|
||||
losses.append(self.loss(out, y[:, i, :]))
|
||||
losses.append(self.loss(out , y[:, i, :]))
|
||||
|
||||
loss = torch.stack(losses).mean()
|
||||
self._log_loss(loss, batch, "val")
|
||||
return loss
|
||||
|
||||
def test_step(self, batch: Batch, batch_idx):
|
||||
x, y, edge_index, edge_attr = self._preprocess_batch(batch)
|
||||
|
||||
deg = self._compute_deg(edge_index, edge_attr, x.size(0))
|
||||
losses = []
|
||||
for i in range(self.max_iters):
|
||||
out = self._compute_model_steps(
|
||||
x,
|
||||
edge_index,
|
||||
edge_attr.unsqueeze(-1),
|
||||
deg,
|
||||
batch.boundary_mask,
|
||||
batch.boundary_values,
|
||||
)
|
||||
converged = self._check_convergence(out, x)
|
||||
# _plot_mesh(batch.pos, y, out, batch.batch, i, batch_idx)
|
||||
losses.append(self.loss(out, y).item())
|
||||
if converged:
|
||||
break
|
||||
x = out
|
||||
loss = self.loss(out, y)
|
||||
# _plot_losses(losses, batch_idx)
|
||||
self._log_loss(loss, batch, "test")
|
||||
self.log(
|
||||
"test/iterations",
|
||||
i + 1,
|
||||
on_step=False,
|
||||
on_epoch=True,
|
||||
prog_bar=True,
|
||||
batch_size=int(batch.num_graphs),
|
||||
)
|
||||
pass
|
||||
|
||||
def configure_optimizers(self):
|
||||
optimizer = torch.optim.AdamW(self.parameters(), lr=1e-2)
|
||||
optimizer = torch.optim.AdamW(self.parameters(), lr=5e-3)
|
||||
return optimizer
|
||||
|
||||
def _impose_bc(self, x: torch.Tensor, data: Batch):
|
||||
x[data.boundary_mask] = data.boundary_values
|
||||
return x
|
||||
|
||||
@@ -85,7 +85,7 @@ class GraphDataModule(LightningDataModule):
|
||||
conductivity = torch.tensor(
|
||||
geometry["conductivity"], dtype=torch.float32
|
||||
)
|
||||
temperatures = torch.tensor(snapshot["temperatures"], dtype=torch.float32)[:2]
|
||||
temperatures = torch.tensor(snapshot["temperatures"], dtype=torch.float32)[:40]
|
||||
times = torch.tensor(snapshot["times"], dtype=torch.float32)
|
||||
|
||||
pos = torch.tensor(geometry["points"], dtype=torch.float32)[:, :2]
|
||||
@@ -131,9 +131,7 @@ class GraphDataModule(LightningDataModule):
|
||||
data = []
|
||||
for i in range(n_data):
|
||||
x = temperatures[i, :].unsqueeze(-1)
|
||||
print(x.shape)
|
||||
y = temperatures[i + 1 : i + 1 + self.unrolling_steps, :].unsqueeze(-1).permute(1,0,2)
|
||||
# print(y.shape)
|
||||
data.append(MeshData(
|
||||
x=x,
|
||||
y=y,
|
||||
@@ -187,9 +185,9 @@ class GraphDataModule(LightningDataModule):
|
||||
def train_dataloader(self):
|
||||
# ds = self.create_autoregressive_datasets(dataset="train")
|
||||
# self.train_dataset = ds
|
||||
print(type(self.train_data[0]))
|
||||
# print(type(self.train_data[0]))
|
||||
ds = [i for data in self.train_data for i in data]
|
||||
print(type(ds[0]))
|
||||
# print(type(ds[0]))
|
||||
return DataLoader(
|
||||
ds,
|
||||
batch_size=self.batch_size,
|
||||
@@ -202,7 +200,7 @@ class GraphDataModule(LightningDataModule):
|
||||
ds = [i for data in self.val_data for i in data]
|
||||
return DataLoader(
|
||||
ds,
|
||||
batch_size=self.batch_size,
|
||||
batch_size=128,
|
||||
shuffle=False,
|
||||
num_workers=8,
|
||||
pin_memory=True,
|
||||
|
||||
100
ThermalSolver/model/diffusion_net.py
Normal file
100
ThermalSolver/model/diffusion_net.py
Normal file
@@ -0,0 +1,100 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch_geometric.nn import MessagePassing
|
||||
|
||||
class DiffusionLayer(MessagePassing):
|
||||
"""
|
||||
Modella: T_new = T_old + dt * Divergenza(Flusso)
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
channels: int,
|
||||
**kwargs,
|
||||
):
|
||||
|
||||
super().__init__(aggr='add', **kwargs)
|
||||
|
||||
self.dt = nn.Parameter(torch.tensor(1e-4))
|
||||
self.conductivity_net = nn.Sequential(
|
||||
nn.Linear(channels, channels, bias=False),
|
||||
nn.GELU(),
|
||||
nn.Linear(channels, channels, bias=False),
|
||||
)
|
||||
|
||||
self.phys_encoder = nn.Sequential(
|
||||
nn.Linear(1, 8, bias=False),
|
||||
nn.Tanh(),
|
||||
nn.Linear(8, 1, bias=False),
|
||||
nn.Softplus()
|
||||
)
|
||||
|
||||
def forward(self, x, edge_index, edge_weight):
|
||||
edge_weight = edge_weight.unsqueeze(-1)
|
||||
conductance = self.phys_encoder(edge_weight)
|
||||
net_flux = self.propagate(edge_index, x=x, conductance=conductance)
|
||||
return x + (net_flux * self.dt)
|
||||
|
||||
def message(self, x_i, x_j, conductance):
|
||||
delta = x_j - x_i
|
||||
flux = delta * conductance
|
||||
flux = flux + self.conductivity_net(flux)
|
||||
return flux
|
||||
|
||||
|
||||
class DiffusionNet(nn.Module):
|
||||
def __init__(self, input_dim=1, output_dim=1, hidden_dim=8, n_layers=4):
|
||||
super().__init__()
|
||||
|
||||
# Encoder: Projects input temperature to hidden feature space
|
||||
self.enc = nn.Sequential(
|
||||
nn.Linear(input_dim, hidden_dim, bias=True),
|
||||
nn.GELU(),
|
||||
nn.Linear(hidden_dim, hidden_dim, bias=True),
|
||||
nn.GELU(),
|
||||
)
|
||||
|
||||
self.scale_x = nn.Parameter(torch.zeros(hidden_dim))
|
||||
|
||||
# Scale parameters for conditioning
|
||||
self.scale_edge_attr = nn.Parameter(torch.zeros(1))
|
||||
|
||||
# Stack of Diffusion Layers
|
||||
self.layers = torch.nn.ModuleList(
|
||||
[DiffusionLayer(hidden_dim) for _ in range(n_layers)]
|
||||
)
|
||||
|
||||
# Decoder: Projects hidden features back to Temperature space
|
||||
self.dec = nn.Sequential(
|
||||
nn.Linear(hidden_dim, hidden_dim, bias=True),
|
||||
nn.GELU(),
|
||||
nn.Linear(hidden_dim, output_dim, bias=True),
|
||||
nn.Softplus(), # Ensure positive temperature output
|
||||
)
|
||||
|
||||
self.func = torch.nn.GELU()
|
||||
|
||||
def forward(self, x, edge_index, edge_attr):
|
||||
# 1. Global Residual Connection setup
|
||||
# We save the input to add it back at the very end.
|
||||
# The network learns the correction (Delta T), not the absolute T.
|
||||
x_input = x
|
||||
|
||||
# 2. Encode
|
||||
h = self.enc(x) * torch.exp(self.scale_x)
|
||||
|
||||
# Scale edge attributes (learnable gating of physical conductivity)
|
||||
w = edge_attr * torch.exp(self.scale_edge_attr)
|
||||
|
||||
# 4. Message Passing (Diffusion Steps)
|
||||
for layer in self.layers:
|
||||
# h is updated internally via residual connection in DiffusionLayer
|
||||
h = layer(h, edge_index, w)
|
||||
h = self.func(h)
|
||||
|
||||
# 5. Decode
|
||||
delta_x = self.dec(h)
|
||||
|
||||
# 6. Final Update (Explicit Euler Step)
|
||||
# T_new = T_old + Correction
|
||||
# return x_input + delta_x
|
||||
return delta_ddx
|
||||
@@ -2,68 +2,209 @@ import torch
|
||||
import torch.nn as nn
|
||||
from torch_geometric.nn import MessagePassing
|
||||
from torch.nn.utils import spectral_norm
|
||||
from torch_geometric.nn.conv import GCNConv
|
||||
from torch_geometric.nn.conv import GCNConv, SAGEConv, GatedGraphConv, GraphConv
|
||||
|
||||
class GCNConvLayer(MessagePassing):
|
||||
def __init__(self, in_channels, out_channels):
|
||||
super().__init__(aggr="add")
|
||||
self.lin_l = nn.Linear(in_channels, out_channels, bias=True)
|
||||
# self.lin_r = spectral_norm(nn.Linear(in_channels, out_channels, bias=False))
|
||||
# class GCNConvLayer(MessagePassing):
|
||||
# def __init__(
|
||||
# self,
|
||||
# in_channels,
|
||||
# out_channels,
|
||||
# aggr: str = 'mean',
|
||||
# bias: bool = True,
|
||||
# **kwargs,
|
||||
# ):
|
||||
# super().__init__(aggr=aggr, **kwargs)
|
||||
|
||||
def forward(self, x, edge_index, edge_attr, deg):
|
||||
out = self.propagate(edge_index, x=x, edge_attr=edge_attr, deg=deg)
|
||||
out = self.lin_l(out)
|
||||
return out
|
||||
# self.in_channels = in_channels
|
||||
# self.out_channels = out_channels
|
||||
|
||||
def message(self, x_j, edge_attr):
|
||||
return x_j * edge_attr.view(-1, 1)
|
||||
# if isinstance(in_channels, int):
|
||||
# in_channels = (in_channels, in_channels)
|
||||
|
||||
def aggregate(self, inputs, index, deg):
|
||||
"""
|
||||
TODO: add docstring.
|
||||
"""
|
||||
out = super().aggregate(inputs, index)
|
||||
deg = deg + 1e-7
|
||||
return out / deg.view(-1, 1)
|
||||
# self.lin_rel = nn.Linear(in_channels[0], out_channels, bias=bias)
|
||||
# self.lin_root = nn.Linear(in_channels[1], out_channels, bias=False)
|
||||
|
||||
# self.reset_parameters()
|
||||
|
||||
# def reset_parameters(self):
|
||||
# super().reset_parameters()
|
||||
# self.lin_rel.reset_parameters()
|
||||
# self.lin_root.reset_parameters()
|
||||
|
||||
|
||||
# def forward(self, x, edge_index,
|
||||
# edge_weight = None, size = None):
|
||||
|
||||
# edge_weight = self.normalize(edge_weight, edge_index, x.size(0), dtype=x.dtype)
|
||||
# out = self.propagate(edge_index, x=x, edge_weight=edge_weight,
|
||||
# size=size)
|
||||
# out = self.lin_rel(out)
|
||||
# out = out + self.lin_root(x)
|
||||
# return out
|
||||
|
||||
# def message(self, x_j, edge_weight):
|
||||
# return x_j * edge_weight.view(-1, 1)
|
||||
|
||||
# @staticmethod
|
||||
# def normalize(edge_weights, edge_index, num_nodes, dtype=None):
|
||||
# """Symmetrically normalize edge weights."""
|
||||
# if dtype is None:
|
||||
# dtype = edge_weights.dtype
|
||||
# device = edge_index.device
|
||||
|
||||
# row, col = edge_index
|
||||
# deg = torch.zeros(num_nodes, device=device, dtype=dtype)
|
||||
# deg = deg.scatter_add(0, row, edge_weights)
|
||||
# deg_inv_sqrt = deg.pow(-0.5)
|
||||
# deg_inv_sqrt[deg_inv_sqrt == float("inf")] = 0
|
||||
# return deg_inv_sqrt[row] * edge_weights * deg_inv_sqrt[col]
|
||||
|
||||
|
||||
# class CorrectionNet(nn.Module):
|
||||
# def __init__(self, input_dim=1, output_dim=1, hidden_dim=8, n_layers=8):
|
||||
# super().__init__()
|
||||
# self.enc = nn.Linear(input_dim, hidden_dim, bias=True),
|
||||
|
||||
# self.scale_x = nn.Parameter(torch.zeros(hidden_dim))
|
||||
# self.scale_edge_attr = nn.Parameter(torch.zeros(1))
|
||||
# self.layers = torch.nn.ModuleList(
|
||||
# [GCNConv(hidden_dim, hidden_dim, aggr="mean") for _ in range(n_layers)]
|
||||
# )
|
||||
# self.dec = nn.Linear(hidden_dim, output_dim, bias=True),
|
||||
# self.func = torch.nn.GELU()
|
||||
|
||||
# def forward(self, x, edge_index, edge_attr,):
|
||||
# h = self.enc(x) # * torch.exp(self.scale_x)
|
||||
# edge_attr = edge_attr # * torch.exp(self.scale_edge_attr)
|
||||
# h = self.func(h)
|
||||
# for l in self.layers:
|
||||
# h = l(h, edge_index, edge_attr)
|
||||
# h = self.func(h)
|
||||
# out = self.dec(h)
|
||||
# return out
|
||||
|
||||
|
||||
# class MLPNet(nn.Module):
|
||||
# def __init__(self, input_dim=1, output_dim=1, hidden_dim=8, n_layers=1):
|
||||
# super().__init__()
|
||||
# layers = []
|
||||
# func = torch.nn.ReLU
|
||||
|
||||
# self.network = nn.Sequential(
|
||||
# nn.Linear(input_dim, hidden_dim),
|
||||
# func(),
|
||||
# nn.Linear(hidden_dim, hidden_dim),
|
||||
# func(),
|
||||
# nn.Linear(hidden_dim, hidden_dim),
|
||||
# func(),
|
||||
# nn.Linear(hidden_dim, output_dim),
|
||||
# )
|
||||
|
||||
# def forward(self, x, edge_index=None, edge_attr=None):
|
||||
# return self.network(x)
|
||||
|
||||
|
||||
# import torch
|
||||
# import torch.nn as nn
|
||||
# from torch_geometric.nn import MessagePassing
|
||||
|
||||
# import torch
|
||||
# import torch.nn as nn
|
||||
# from torch_geometric.nn import MessagePassing
|
||||
|
||||
class DiffusionLayer(MessagePassing):
|
||||
"""
|
||||
Modella: T_new = T_old + dt * Divergenza(Flusso)
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
channels: int,
|
||||
**kwargs,
|
||||
):
|
||||
|
||||
super().__init__(aggr='add', **kwargs)
|
||||
|
||||
self.dt = nn.Parameter(torch.tensor(1e-4))
|
||||
self.conductivity_net = nn.Sequential(
|
||||
nn.Linear(channels, channels, bias=False),
|
||||
nn.GELU(),
|
||||
nn.Linear(channels, channels, bias=False),
|
||||
)
|
||||
|
||||
self.phys_encoder = nn.Sequential(
|
||||
nn.Linear(1, 8, bias=False),
|
||||
nn.Tanh(),
|
||||
nn.Linear(8, 1, bias=False),
|
||||
nn.Softplus()
|
||||
)
|
||||
|
||||
def forward(self, x, edge_index, edge_weight):
|
||||
edge_weight = edge_weight.unsqueeze(-1)
|
||||
conductance = self.phys_encoder(edge_weight)
|
||||
net_flux = self.propagate(edge_index, x=x, conductance=conductance)
|
||||
return x + (net_flux * self.dt)
|
||||
|
||||
def message(self, x_i, x_j, conductance):
|
||||
delta = x_j - x_i
|
||||
flux = delta * conductance
|
||||
flux = flux + self.conductivity_net(flux)
|
||||
return flux
|
||||
|
||||
|
||||
class CorrectionNet(nn.Module):
|
||||
def __init__(self, input_dim=1, output_dim=1, hidden_dim=8, n_layers=8):
|
||||
def __init__(self, input_dim=1, output_dim=1, hidden_dim=32, n_layers=4):
|
||||
super().__init__()
|
||||
self.enc = nn.Linear(input_dim, hidden_dim, bias=False)
|
||||
# self.layers = n_layers
|
||||
# self.l = GCNConv(hidden_dim, hidden_dim, aggr="mean")
|
||||
self.layers = torch.nn.ModuleList(
|
||||
[GCNConv(hidden_dim, hidden_dim, aggr="mean", bias=False) for _ in range(n_layers)]
|
||||
)
|
||||
self.dec = nn.Linear(hidden_dim, output_dim)
|
||||
|
||||
def forward(self, x, edge_index, edge_attr,):
|
||||
h = self.enc(x)
|
||||
# h = self.relu(h)
|
||||
for l in self.layers:
|
||||
# print(f"Forward pass layer {_}")
|
||||
h = l(h, edge_index, edge_attr)
|
||||
# h = self.relu(h)
|
||||
out = self.dec(h)
|
||||
return out
|
||||
|
||||
|
||||
class MLPNet(nn.Module):
|
||||
def __init__(self, input_dim=1, output_dim=1, hidden_dim=8, n_layers=1):
|
||||
super().__init__()
|
||||
layers = []
|
||||
func = torch.nn.ReLU
|
||||
|
||||
self.network = nn.Sequential(
|
||||
nn.Linear(input_dim, hidden_dim),
|
||||
func(),
|
||||
nn.Linear(hidden_dim, hidden_dim),
|
||||
func(),
|
||||
nn.Linear(hidden_dim, hidden_dim),
|
||||
func(),
|
||||
nn.Linear(hidden_dim, output_dim),
|
||||
# Encoder: Projects input temperature to hidden feature space
|
||||
self.enc = nn.Sequential(
|
||||
nn.Linear(input_dim, hidden_dim, bias=True),
|
||||
nn.GELU(),
|
||||
nn.Linear(hidden_dim, hidden_dim, bias=True),
|
||||
nn.GELU(),
|
||||
)
|
||||
|
||||
def forward(self, x, edge_index=None, edge_attr=None):
|
||||
return self.network(x)
|
||||
self.scale_x = nn.Parameter(torch.zeros(hidden_dim))
|
||||
|
||||
# Scale parameters for conditioning
|
||||
self.scale_edge_attr = nn.Parameter(torch.zeros(1))
|
||||
|
||||
# Stack of Diffusion Layers
|
||||
self.layers = torch.nn.ModuleList(
|
||||
[DiffusionLayer(hidden_dim) for _ in range(n_layers)]
|
||||
)
|
||||
|
||||
# Decoder: Projects hidden features back to Temperature space
|
||||
self.dec = nn.Sequential(
|
||||
nn.Linear(hidden_dim, hidden_dim, bias=True),
|
||||
nn.GELU(),
|
||||
nn.Linear(hidden_dim, output_dim, bias=True),
|
||||
nn.Softplus(), # Ensure positive temperature output
|
||||
)
|
||||
|
||||
self.func = torch.nn.GELU()
|
||||
|
||||
def forward(self, x, edge_index, edge_attr):
|
||||
# 1. Global Residual Connection setup
|
||||
# We save the input to add it back at the very end.
|
||||
# The network learns the correction (Delta T), not the absolute T.
|
||||
x_input = x
|
||||
|
||||
# 2. Encode
|
||||
h = self.enc(x) * torch.exp(self.scale_x)
|
||||
|
||||
# Scale edge attributes (learnable gating of physical conductivity)
|
||||
w = edge_attr * torch.exp(self.scale_edge_attr)
|
||||
|
||||
# 4. Message Passing (Diffusion Steps)
|
||||
for layer in self.layers:
|
||||
# h is updated internally via residual connection in DiffusionLayer
|
||||
h = layer(h, edge_index, w)
|
||||
h = self.func(h)
|
||||
|
||||
# 5. Decode
|
||||
delta_x = self.dec(h)
|
||||
|
||||
# 6. Final Update (Explicit Euler Step)
|
||||
# T_new = T_old + Correction
|
||||
# return x_input + delta_x
|
||||
return delta_x
|
||||
Reference in New Issue
Block a user