add module and first model
This commit is contained in:
108
ThermalSolver/model/local_gno.py
Normal file
108
ThermalSolver/model/local_gno.py
Normal file
@@ -0,0 +1,108 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch_geometric.nn import MessagePassing
|
||||
|
||||
|
||||
# ---- FiLM that starts as identity and normalizes the target ----
|
||||
class FiLM(nn.Module):
|
||||
def __init__(self, c_ch, h_ch):
|
||||
super().__init__()
|
||||
self.net = nn.Sequential(
|
||||
nn.Linear(c_ch, 2*h_ch),
|
||||
nn.SiLU(),
|
||||
nn.Linear(2*h_ch, 2*h_ch)
|
||||
)
|
||||
# init to identity: gamma≈0 (so 1+gamma=1), beta=0
|
||||
nn.init.zeros_(self.net[-1].weight)
|
||||
nn.init.zeros_(self.net[-1].bias)
|
||||
self.norm = nn.LayerNorm(h_ch)
|
||||
|
||||
def forward(self, h, c):
|
||||
gb = self.net(c)
|
||||
gamma, beta = gb.chunk(2, dim=-1)
|
||||
return (1 + gamma) * self.norm(h) + beta
|
||||
|
||||
|
||||
class ConditionalGNOBlock(MessagePassing):
|
||||
"""
|
||||
Message passing with FiLM applied to the MESSAGE m_ij,
|
||||
using edge context c_ij = (c_i + c_j)/2.
|
||||
"""
|
||||
def __init__(self, hidden_ch, edge_ch=0, aggr="mean"):
|
||||
super().__init__(aggr=aggr, node_dim=0)
|
||||
self.pre_norm = nn.LayerNorm(hidden_ch)
|
||||
|
||||
# raw message builder
|
||||
self.msg = nn.Sequential(
|
||||
nn.Linear(2*hidden_ch + edge_ch, 2*hidden_ch),
|
||||
nn.SiLU(),
|
||||
nn.Linear(2*hidden_ch, hidden_ch)
|
||||
)
|
||||
|
||||
# FiLM over the message (per-edge)
|
||||
self.film_msg = FiLM(c_ch=hidden_ch, h_ch=hidden_ch)
|
||||
|
||||
# node update with residual
|
||||
self.update_mlp = nn.Sequential(
|
||||
nn.Linear(2*hidden_ch, hidden_ch),
|
||||
nn.SiLU(),
|
||||
nn.Linear(hidden_ch, hidden_ch)
|
||||
)
|
||||
|
||||
def forward(self, x, c, edge_index, edge_attr=None):
|
||||
# pre-norm helps stability
|
||||
x_in = x
|
||||
x = self.pre_norm(x)
|
||||
m = self.propagate(edge_index, x=x, c=c, edge_attr=edge_attr)
|
||||
out = self.update_mlp(torch.cat([x_in, m], dim=-1))
|
||||
return x_in + out # residual
|
||||
|
||||
def message(self, x_i, x_j, c_i, c_j, edge_attr):
|
||||
if edge_attr is not None:
|
||||
m_in = torch.cat([x_i, x_j, edge_attr], dim=-1)
|
||||
else:
|
||||
m_in = torch.cat([x_i, x_j], dim=-1)
|
||||
|
||||
m_raw = self.msg(m_in)
|
||||
|
||||
# edge conditioning: simple mean
|
||||
c_ctx = 0.5 * (c_i + c_j)
|
||||
m = self.film_msg(m_raw, c_ctx)
|
||||
return m
|
||||
|
||||
|
||||
class GatingGNO(nn.Module):
|
||||
"""
|
||||
In:
|
||||
x : [N, Cx] (e.g., u or features to predict from)
|
||||
c : [N, Cf] (conditioning field, e.g., conductivity)
|
||||
Out:
|
||||
y : [N, out_ch]
|
||||
"""
|
||||
def __init__(self, x_ch_node, f_ch_node, hidden, layers, edge_ch=0, out_ch=1):
|
||||
super().__init__()
|
||||
self.encoder_x = nn.Sequential(
|
||||
nn.Linear(x_ch_node, hidden // 2),
|
||||
nn.SiLU(),
|
||||
nn.Linear(hidden // 2, hidden),
|
||||
)
|
||||
self.encoder_c = nn.Sequential(
|
||||
nn.Linear(f_ch_node, hidden // 2),
|
||||
nn.SiLU(),
|
||||
nn.Linear(hidden // 2, hidden),
|
||||
)
|
||||
self.blocks = nn.ModuleList(
|
||||
[ConditionalGNOBlock(hidden_ch=hidden, edge_ch=edge_ch) for _ in range(layers)]
|
||||
)
|
||||
self.dec = nn.Sequential(
|
||||
nn.LayerNorm(hidden),
|
||||
nn.SiLU(),
|
||||
nn.Linear(hidden, out_ch)
|
||||
)
|
||||
|
||||
def forward(self, x, c, edge_index, edge_attr=None):
|
||||
x = self.encoder_x(x) # [N,H]
|
||||
c = self.encoder_c(c) # [N,H]
|
||||
for blk in self.blocks:
|
||||
x = blk(x, c, edge_index, edge_attr=edge_attr)
|
||||
return self.dec(x)
|
||||
Reference in New Issue
Block a user