add module and first model
This commit is contained in:
74
ThermalSolver/module.py
Normal file
74
ThermalSolver/module.py
Normal file
@@ -0,0 +1,74 @@
|
||||
import torch
|
||||
from lightning import LightningModule
|
||||
from torch_geometric.data import Batch
|
||||
|
||||
|
||||
class GraphSolver(LightningModule):
|
||||
def __init__(self, model: torch.nn.Module, loss: torch.nn.Module = None, unrolling_steps: int = 10):
|
||||
super().__init__()
|
||||
self.model = model
|
||||
self.loss = loss if loss is not None else torch.nn.MSELoss()
|
||||
self.unrolling_steps = unrolling_steps
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
c: torch.Tensor,
|
||||
edge_index: torch.Tensor,
|
||||
edge_attr: torch.Tensor,
|
||||
):
|
||||
return self.model(x, c, edge_index, edge_attr)
|
||||
|
||||
def _compute_loss_train(self, x, x_prev, y):
|
||||
return self.loss(x, y) + self.loss(x, x_prev)
|
||||
|
||||
def _compute_loss(self, x, y):
|
||||
return self.loss(x, y)
|
||||
|
||||
def _preprocess_batch(self, batch: Batch):
|
||||
return batch.x, batch.y, batch.c, batch.edge_index, batch.edge_attr
|
||||
|
||||
def _log_loss(self, loss, batch, stage: str):
|
||||
self.log(
|
||||
f"{stage}_loss",
|
||||
loss,
|
||||
on_step=False,
|
||||
on_epoch=True,
|
||||
prog_bar=True,
|
||||
batch_size=int(batch.num_graphs),
|
||||
)
|
||||
return loss
|
||||
|
||||
def training_step(self, batch: Batch, _):
|
||||
x, y, c, edge_index, edge_attr = self._preprocess_batch(batch)
|
||||
for _ in range(self.unrolling_steps):
|
||||
x_prev = x.detach()
|
||||
x = self(x_prev, c, edge_index=edge_index, edge_attr=edge_attr)
|
||||
loss = self.loss(x, y)
|
||||
self._log_loss(loss, batch, "train")
|
||||
return loss
|
||||
|
||||
def validation_step(self, batch: Batch, _):
|
||||
x, y, c, edge_index, edge_attr = self._preprocess_batch(batch)
|
||||
for _ in range(self.unrolling_steps):
|
||||
x_prev = x.detach()
|
||||
x = self(x_prev, c, edge_index=edge_index, edge_attr=edge_attr)
|
||||
loss = self.loss(x, x_prev)
|
||||
if loss < 1e-5:
|
||||
break
|
||||
loss = self._compute_loss(x, y)
|
||||
self._log_loss(loss, batch, "val")
|
||||
return loss
|
||||
|
||||
def test_step(self, batch: Batch, _):
|
||||
x, y, c, edge_index, edge_attr = self._preprocess_batch(batch)
|
||||
for _ in range(self.unrolling_steps):
|
||||
x_prev = x.detach()
|
||||
x = self(x_prev, c, edge_index=edge_index, edge_attr=edge_attr)
|
||||
loss = self._compute_loss(x, y)
|
||||
self._log_loss(loss, batch, "test")
|
||||
return loss
|
||||
|
||||
def configure_optimizers(self):
|
||||
optimizer = torch.optim.Adam(self.parameters(), lr=5e-3)
|
||||
return optimizer
|
||||
Reference in New Issue
Block a user