implement ML correction
This commit is contained in:
@@ -4,6 +4,7 @@ from torch_geometric.data import Batch
|
|||||||
import importlib
|
import importlib
|
||||||
from matplotlib import pyplot as plt
|
from matplotlib import pyplot as plt
|
||||||
from matplotlib.tri import Triangulation
|
from matplotlib.tri import Triangulation
|
||||||
|
from .model.finite_difference import FiniteDifferenceStep
|
||||||
|
|
||||||
|
|
||||||
def import_class(class_path: str):
|
def import_class(class_path: str):
|
||||||
@@ -56,6 +57,7 @@ class GraphSolver(LightningModule):
|
|||||||
):
|
):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.model = import_class(model_class_path)(**model_init_args)
|
self.model = import_class(model_class_path)(**model_init_args)
|
||||||
|
self.fd_net = FiniteDifferenceStep()
|
||||||
self.loss = loss if loss is not None else torch.nn.MSELoss()
|
self.loss = loss if loss is not None else torch.nn.MSELoss()
|
||||||
self.curriculum_learning = curriculum_learning
|
self.curriculum_learning = curriculum_learning
|
||||||
self.start_iters = start_iters
|
self.start_iters = start_iters
|
||||||
@@ -67,6 +69,8 @@ class GraphSolver(LightningModule):
|
|||||||
self.automatic_optimization = False
|
self.automatic_optimization = False
|
||||||
self.threshold = 1e-5
|
self.threshold = 1e-5
|
||||||
|
|
||||||
|
self.aplha = 0.1
|
||||||
|
|
||||||
def _compute_deg(self, edge_index, edge_attr, num_nodes):
|
def _compute_deg(self, edge_index, edge_attr, num_nodes):
|
||||||
deg = torch.zeros(num_nodes, device=edge_index.device)
|
deg = torch.zeros(num_nodes, device=edge_index.device)
|
||||||
deg = deg.scatter_add(0, edge_index[1], edge_attr)
|
deg = deg.scatter_add(0, edge_index[1], edge_attr)
|
||||||
@@ -96,8 +100,15 @@ class GraphSolver(LightningModule):
|
|||||||
def _compute_model_steps(
|
def _compute_model_steps(
|
||||||
self, x, edge_index, edge_attr, deg, boundary_mask, boundary_values
|
self, x, edge_index, edge_attr, deg, boundary_mask, boundary_values
|
||||||
):
|
):
|
||||||
out = self.model(x, edge_index, edge_attr, deg)
|
with torch.no_grad():
|
||||||
|
out = self.fd_net(x, edge_index, edge_attr, deg)
|
||||||
out[boundary_mask] = boundary_values.unsqueeze(-1)
|
out[boundary_mask] = boundary_values.unsqueeze(-1)
|
||||||
|
# diff = out - x
|
||||||
|
correction = self.model(x, edge_index, edge_attr, deg)
|
||||||
|
out = out + self.aplha * correction
|
||||||
|
out[boundary_mask] = boundary_values.unsqueeze(-1)
|
||||||
|
# out = self.model(x, edge_index, edge_attr, deg)
|
||||||
|
# out[boundary_mask] = boundary_values.unsqueeze(-1)
|
||||||
return out
|
return out
|
||||||
|
|
||||||
def _check_convergence(self, out, x):
|
def _check_convergence(self, out, x):
|
||||||
@@ -132,11 +143,7 @@ class GraphSolver(LightningModule):
|
|||||||
deg = self._compute_deg(edge_index, edge_attr, x.size(0))
|
deg = self._compute_deg(edge_index, edge_attr, x.size(0))
|
||||||
losses = []
|
losses = []
|
||||||
acc_loss, acc_it = 0, 0
|
acc_loss, acc_it = 0, 0
|
||||||
max_acc_iters = (
|
|
||||||
self.current_iters // self.accumulation_iters + 1
|
|
||||||
if self.accumulation_iters is not None
|
|
||||||
else 1
|
|
||||||
)
|
|
||||||
for i in range(self.current_iters):
|
for i in range(self.current_iters):
|
||||||
out = self._compute_model_steps(
|
out = self._compute_model_steps(
|
||||||
x,
|
x,
|
||||||
|
|||||||
@@ -1,6 +1,7 @@
|
|||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
from torch_geometric.nn import MessagePassing
|
from torch_geometric.nn import MessagePassing
|
||||||
|
from torch.nn.utils import spectral_norm
|
||||||
|
|
||||||
|
|
||||||
class FiniteDifferenceStep(MessagePassing):
|
class FiniteDifferenceStep(MessagePassing):
|
||||||
@@ -8,14 +9,8 @@ class FiniteDifferenceStep(MessagePassing):
|
|||||||
TODO: add docstring.
|
TODO: add docstring.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, aggr: str = "add", root_weight: float = 1.0):
|
def __init__(self):
|
||||||
super().__init__(aggr=aggr)
|
super().__init__(aggr="add")
|
||||||
assert (
|
|
||||||
aggr == "add"
|
|
||||||
), "Per somme pesate, l'aggregazione deve essere 'add'."
|
|
||||||
# self.root_weight = float(root_weight)
|
|
||||||
self.p = torch.nn.Parameter(torch.tensor(1.0))
|
|
||||||
self.a = root_weight
|
|
||||||
|
|
||||||
def forward(self, x, edge_index, edge_attr, deg):
|
def forward(self, x, edge_index, edge_attr, deg):
|
||||||
"""
|
"""
|
||||||
@@ -28,8 +23,14 @@ class FiniteDifferenceStep(MessagePassing):
|
|||||||
"""
|
"""
|
||||||
TODO: add docstring.
|
TODO: add docstring.
|
||||||
"""
|
"""
|
||||||
p = torch.clamp(self.p, 0.0, 1.0)
|
# return self.message_net(x_j * edge_attr)
|
||||||
return p * edge_attr.view(-1, 1) * x_j
|
return x_j * edge_attr
|
||||||
|
|
||||||
|
def update(self, aggr_out, _):
|
||||||
|
"""
|
||||||
|
TODO: add docstring.
|
||||||
|
"""
|
||||||
|
return aggr_out
|
||||||
|
|
||||||
def aggregate(self, inputs, index, deg):
|
def aggregate(self, inputs, index, deg):
|
||||||
"""
|
"""
|
||||||
@@ -38,82 +39,3 @@ class FiniteDifferenceStep(MessagePassing):
|
|||||||
out = super().aggregate(inputs, index)
|
out = super().aggregate(inputs, index)
|
||||||
deg = deg + 1e-7
|
deg = deg + 1e-7
|
||||||
return out / deg.view(-1, 1)
|
return out / deg.view(-1, 1)
|
||||||
|
|
||||||
def update(self, aggr_out, x):
|
|
||||||
"""
|
|
||||||
TODO: add docstring.
|
|
||||||
"""
|
|
||||||
return aggr_out
|
|
||||||
|
|
||||||
|
|
||||||
class GraphFiniteDifference(nn.Module):
|
|
||||||
"""
|
|
||||||
TODO: add docstring.
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(self, max_iters: int = 5000, threshold: float = 1e-4):
|
|
||||||
"""
|
|
||||||
TODO: add docstring.
|
|
||||||
"""
|
|
||||||
super().__init__()
|
|
||||||
self.max_iters = max_iters
|
|
||||||
self.threshold = threshold
|
|
||||||
self.fd_step = FiniteDifferenceStep(aggr="add", root_weight=1.0)
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def _compute_deg(edge_index, edge_attr, num_nodes):
|
|
||||||
"""
|
|
||||||
TODO: add docstring.
|
|
||||||
"""
|
|
||||||
deg = torch.zeros(num_nodes, device=edge_index.device)
|
|
||||||
deg = deg.scatter_add(0, edge_index[1], edge_attr)
|
|
||||||
return deg + 1e-7
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def _compute_c_ij(c, edge_index):
|
|
||||||
"""
|
|
||||||
TODO: add docstring.
|
|
||||||
"""
|
|
||||||
return (0.5 * (c[edge_index[0]] + c[edge_index[1]])).squeeze()
|
|
||||||
|
|
||||||
def forward(
|
|
||||||
self,
|
|
||||||
x,
|
|
||||||
edge_index,
|
|
||||||
edge_attr,
|
|
||||||
c,
|
|
||||||
boundary_mask,
|
|
||||||
boundary_values,
|
|
||||||
**kwargs,
|
|
||||||
):
|
|
||||||
"""
|
|
||||||
TODO: add docstring.
|
|
||||||
"""
|
|
||||||
edge_attr = 1 / edge_attr[:, -1]
|
|
||||||
c_ij = self._compute_c_ij(c, edge_index)
|
|
||||||
edge_attr = edge_attr * c_ij
|
|
||||||
deg = self._compute_deg(edge_index, edge_attr, x.size(0))
|
|
||||||
|
|
||||||
# Calcola la soglia staccando x dal grafo
|
|
||||||
conv_thres = self.threshold * torch.norm(x.detach())
|
|
||||||
|
|
||||||
for _i in range(self.max_iters):
|
|
||||||
out = self.fd_step(x, edge_index, edge_attr, deg)
|
|
||||||
out[boundary_mask] = boundary_values.unsqueeze(-1)
|
|
||||||
|
|
||||||
# Controllo convergenza senza tracciamento gradienti
|
|
||||||
with torch.no_grad():
|
|
||||||
residual_norm = torch.norm(out - x)
|
|
||||||
|
|
||||||
if residual_norm < conv_thres:
|
|
||||||
break
|
|
||||||
|
|
||||||
# --- OTTIMIZZAZIONE CHIAVE ---
|
|
||||||
# Stacca 'out' dal grafo prima della prossima iterazione
|
|
||||||
# per evitare BPTT e risparmiare memoria.
|
|
||||||
x = out.detach()
|
|
||||||
|
|
||||||
# Il 'out' finale restituito mantiene i gradienti
|
|
||||||
# dell'ULTIMA chiamata a fd_step, permettendo al modello
|
|
||||||
# di apprendere correttamente.
|
|
||||||
return out, _i + 1
|
|
||||||
|
|||||||
@@ -1,53 +1,53 @@
|
|||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
from torch_geometric.nn import MessagePassing
|
from torch_geometric.nn import MessagePassing
|
||||||
from torch.nn.utils import spectral_norm
|
|
||||||
|
# from torch.nn.utils import spectral_norm
|
||||||
|
|
||||||
|
|
||||||
class FiniteDifferenceStep(MessagePassing):
|
class GCNConvLayer(MessagePassing):
|
||||||
"""
|
def __init__(self, in_channels, out_channels):
|
||||||
TODO: add docstring.
|
super().__init__("add")
|
||||||
"""
|
self.lin = nn.Sequential(
|
||||||
|
nn.Linear(in_channels, out_channels),
|
||||||
def __init__(self, hidden_dim=16, aggr: str = "add"):
|
nn.ReLU(),
|
||||||
print(aggr)
|
nn.Linear(out_channels, out_channels),
|
||||||
super().__init__(aggr=aggr)
|
nn.ReLU(),
|
||||||
self.x_embedding = nn.Sequential(
|
|
||||||
spectral_norm(nn.Linear(1, hidden_dim // 2)),
|
|
||||||
nn.GELU(),
|
|
||||||
spectral_norm(nn.Linear(hidden_dim // 2, hidden_dim)),
|
|
||||||
)
|
)
|
||||||
|
|
||||||
self.out_net = nn.Sequential(
|
def _compute_edge_weight(self, edge_index, edge_w, deg):
|
||||||
spectral_norm(nn.Linear(hidden_dim, hidden_dim // 2)),
|
""" """
|
||||||
nn.GELU(),
|
return edge_w.squeeze() / (
|
||||||
spectral_norm(nn.Linear(hidden_dim // 2, 1)),
|
1 + torch.sqrt(deg[edge_index[0]] * deg[edge_index[1]])
|
||||||
)
|
)
|
||||||
|
|
||||||
def forward(self, x, edge_index, edge_attr, deg):
|
def forward(self, x, edge_index, edge_attr, deg):
|
||||||
"""
|
edge_w = self._compute_edge_weight(edge_index, edge_attr, deg)
|
||||||
TODO: add docstring.
|
return self.propagate(edge_index, x=x, edge_weight=edge_w, deg=deg)
|
||||||
"""
|
|
||||||
x_ = self.x_embedding(x)
|
|
||||||
out = self.propagate(edge_index, x=x_, edge_attr=edge_attr, deg=deg)
|
|
||||||
return self.out_net(out)
|
|
||||||
|
|
||||||
def message(self, x_j, edge_attr):
|
def message(self, x_j, edge_weight):
|
||||||
"""
|
return edge_weight.view(-1, 1) * x_j
|
||||||
TODO: add docstring.
|
|
||||||
"""
|
|
||||||
return x_j * edge_attr.view(-1, 1)
|
|
||||||
|
|
||||||
def update(self, aggr_out, _):
|
|
||||||
"""
|
|
||||||
TODO: add docstring.
|
|
||||||
"""
|
|
||||||
return aggr_out
|
|
||||||
|
|
||||||
def aggregate(self, inputs, index, deg):
|
class CorrectionNet(nn.Module):
|
||||||
"""
|
def __init__(self, hidden_dim=8):
|
||||||
TODO: add docstring.
|
super().__init__()
|
||||||
"""
|
self.enc = nn.Sequential(
|
||||||
out = super().aggregate(inputs, index)
|
nn.Linear(1, hidden_dim // 2),
|
||||||
deg = deg + 1e-7
|
nn.ReLU(),
|
||||||
return out / deg.view(-1, 1)
|
nn.Linear(hidden_dim // 2, hidden_dim),
|
||||||
|
nn.ReLU(),
|
||||||
|
)
|
||||||
|
self.model = GCNConvLayer(hidden_dim, hidden_dim)
|
||||||
|
self.dec = nn.Sequential(
|
||||||
|
nn.Linear(hidden_dim, hidden_dim // 2),
|
||||||
|
nn.ReLU(),
|
||||||
|
nn.Linear(hidden_dim // 2, 1),
|
||||||
|
nn.ReLU(),
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, x, edge_index, edge_attr, deg):
|
||||||
|
h = self.enc(x)
|
||||||
|
h = self.model(h, edge_index, edge_attr, deg)
|
||||||
|
out = self.dec(h)
|
||||||
|
return out
|
||||||
|
|||||||
Reference in New Issue
Block a user