implement ML correction
This commit is contained in:
@@ -4,6 +4,7 @@ from torch_geometric.data import Batch
|
||||
import importlib
|
||||
from matplotlib import pyplot as plt
|
||||
from matplotlib.tri import Triangulation
|
||||
from .model.finite_difference import FiniteDifferenceStep
|
||||
|
||||
|
||||
def import_class(class_path: str):
|
||||
@@ -56,6 +57,7 @@ class GraphSolver(LightningModule):
|
||||
):
|
||||
super().__init__()
|
||||
self.model = import_class(model_class_path)(**model_init_args)
|
||||
self.fd_net = FiniteDifferenceStep()
|
||||
self.loss = loss if loss is not None else torch.nn.MSELoss()
|
||||
self.curriculum_learning = curriculum_learning
|
||||
self.start_iters = start_iters
|
||||
@@ -67,6 +69,8 @@ class GraphSolver(LightningModule):
|
||||
self.automatic_optimization = False
|
||||
self.threshold = 1e-5
|
||||
|
||||
self.aplha = 0.1
|
||||
|
||||
def _compute_deg(self, edge_index, edge_attr, num_nodes):
|
||||
deg = torch.zeros(num_nodes, device=edge_index.device)
|
||||
deg = deg.scatter_add(0, edge_index[1], edge_attr)
|
||||
@@ -96,8 +100,15 @@ class GraphSolver(LightningModule):
|
||||
def _compute_model_steps(
|
||||
self, x, edge_index, edge_attr, deg, boundary_mask, boundary_values
|
||||
):
|
||||
out = self.model(x, edge_index, edge_attr, deg)
|
||||
with torch.no_grad():
|
||||
out = self.fd_net(x, edge_index, edge_attr, deg)
|
||||
out[boundary_mask] = boundary_values.unsqueeze(-1)
|
||||
# diff = out - x
|
||||
correction = self.model(x, edge_index, edge_attr, deg)
|
||||
out = out + self.aplha * correction
|
||||
out[boundary_mask] = boundary_values.unsqueeze(-1)
|
||||
# out = self.model(x, edge_index, edge_attr, deg)
|
||||
# out[boundary_mask] = boundary_values.unsqueeze(-1)
|
||||
return out
|
||||
|
||||
def _check_convergence(self, out, x):
|
||||
@@ -132,11 +143,7 @@ class GraphSolver(LightningModule):
|
||||
deg = self._compute_deg(edge_index, edge_attr, x.size(0))
|
||||
losses = []
|
||||
acc_loss, acc_it = 0, 0
|
||||
max_acc_iters = (
|
||||
self.current_iters // self.accumulation_iters + 1
|
||||
if self.accumulation_iters is not None
|
||||
else 1
|
||||
)
|
||||
|
||||
for i in range(self.current_iters):
|
||||
out = self._compute_model_steps(
|
||||
x,
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch_geometric.nn import MessagePassing
|
||||
from torch.nn.utils import spectral_norm
|
||||
|
||||
|
||||
class FiniteDifferenceStep(MessagePassing):
|
||||
@@ -8,14 +9,8 @@ class FiniteDifferenceStep(MessagePassing):
|
||||
TODO: add docstring.
|
||||
"""
|
||||
|
||||
def __init__(self, aggr: str = "add", root_weight: float = 1.0):
|
||||
super().__init__(aggr=aggr)
|
||||
assert (
|
||||
aggr == "add"
|
||||
), "Per somme pesate, l'aggregazione deve essere 'add'."
|
||||
# self.root_weight = float(root_weight)
|
||||
self.p = torch.nn.Parameter(torch.tensor(1.0))
|
||||
self.a = root_weight
|
||||
def __init__(self):
|
||||
super().__init__(aggr="add")
|
||||
|
||||
def forward(self, x, edge_index, edge_attr, deg):
|
||||
"""
|
||||
@@ -28,8 +23,14 @@ class FiniteDifferenceStep(MessagePassing):
|
||||
"""
|
||||
TODO: add docstring.
|
||||
"""
|
||||
p = torch.clamp(self.p, 0.0, 1.0)
|
||||
return p * edge_attr.view(-1, 1) * x_j
|
||||
# return self.message_net(x_j * edge_attr)
|
||||
return x_j * edge_attr
|
||||
|
||||
def update(self, aggr_out, _):
|
||||
"""
|
||||
TODO: add docstring.
|
||||
"""
|
||||
return aggr_out
|
||||
|
||||
def aggregate(self, inputs, index, deg):
|
||||
"""
|
||||
@@ -38,82 +39,3 @@ class FiniteDifferenceStep(MessagePassing):
|
||||
out = super().aggregate(inputs, index)
|
||||
deg = deg + 1e-7
|
||||
return out / deg.view(-1, 1)
|
||||
|
||||
def update(self, aggr_out, x):
|
||||
"""
|
||||
TODO: add docstring.
|
||||
"""
|
||||
return aggr_out
|
||||
|
||||
|
||||
class GraphFiniteDifference(nn.Module):
|
||||
"""
|
||||
TODO: add docstring.
|
||||
"""
|
||||
|
||||
def __init__(self, max_iters: int = 5000, threshold: float = 1e-4):
|
||||
"""
|
||||
TODO: add docstring.
|
||||
"""
|
||||
super().__init__()
|
||||
self.max_iters = max_iters
|
||||
self.threshold = threshold
|
||||
self.fd_step = FiniteDifferenceStep(aggr="add", root_weight=1.0)
|
||||
|
||||
@staticmethod
|
||||
def _compute_deg(edge_index, edge_attr, num_nodes):
|
||||
"""
|
||||
TODO: add docstring.
|
||||
"""
|
||||
deg = torch.zeros(num_nodes, device=edge_index.device)
|
||||
deg = deg.scatter_add(0, edge_index[1], edge_attr)
|
||||
return deg + 1e-7
|
||||
|
||||
@staticmethod
|
||||
def _compute_c_ij(c, edge_index):
|
||||
"""
|
||||
TODO: add docstring.
|
||||
"""
|
||||
return (0.5 * (c[edge_index[0]] + c[edge_index[1]])).squeeze()
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x,
|
||||
edge_index,
|
||||
edge_attr,
|
||||
c,
|
||||
boundary_mask,
|
||||
boundary_values,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
TODO: add docstring.
|
||||
"""
|
||||
edge_attr = 1 / edge_attr[:, -1]
|
||||
c_ij = self._compute_c_ij(c, edge_index)
|
||||
edge_attr = edge_attr * c_ij
|
||||
deg = self._compute_deg(edge_index, edge_attr, x.size(0))
|
||||
|
||||
# Calcola la soglia staccando x dal grafo
|
||||
conv_thres = self.threshold * torch.norm(x.detach())
|
||||
|
||||
for _i in range(self.max_iters):
|
||||
out = self.fd_step(x, edge_index, edge_attr, deg)
|
||||
out[boundary_mask] = boundary_values.unsqueeze(-1)
|
||||
|
||||
# Controllo convergenza senza tracciamento gradienti
|
||||
with torch.no_grad():
|
||||
residual_norm = torch.norm(out - x)
|
||||
|
||||
if residual_norm < conv_thres:
|
||||
break
|
||||
|
||||
# --- OTTIMIZZAZIONE CHIAVE ---
|
||||
# Stacca 'out' dal grafo prima della prossima iterazione
|
||||
# per evitare BPTT e risparmiare memoria.
|
||||
x = out.detach()
|
||||
|
||||
# Il 'out' finale restituito mantiene i gradienti
|
||||
# dell'ULTIMA chiamata a fd_step, permettendo al modello
|
||||
# di apprendere correttamente.
|
||||
return out, _i + 1
|
||||
|
||||
@@ -1,53 +1,53 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch_geometric.nn import MessagePassing
|
||||
from torch.nn.utils import spectral_norm
|
||||
|
||||
# from torch.nn.utils import spectral_norm
|
||||
|
||||
|
||||
class FiniteDifferenceStep(MessagePassing):
|
||||
"""
|
||||
TODO: add docstring.
|
||||
"""
|
||||
|
||||
def __init__(self, hidden_dim=16, aggr: str = "add"):
|
||||
print(aggr)
|
||||
super().__init__(aggr=aggr)
|
||||
self.x_embedding = nn.Sequential(
|
||||
spectral_norm(nn.Linear(1, hidden_dim // 2)),
|
||||
nn.GELU(),
|
||||
spectral_norm(nn.Linear(hidden_dim // 2, hidden_dim)),
|
||||
class GCNConvLayer(MessagePassing):
|
||||
def __init__(self, in_channels, out_channels):
|
||||
super().__init__("add")
|
||||
self.lin = nn.Sequential(
|
||||
nn.Linear(in_channels, out_channels),
|
||||
nn.ReLU(),
|
||||
nn.Linear(out_channels, out_channels),
|
||||
nn.ReLU(),
|
||||
)
|
||||
|
||||
self.out_net = nn.Sequential(
|
||||
spectral_norm(nn.Linear(hidden_dim, hidden_dim // 2)),
|
||||
nn.GELU(),
|
||||
spectral_norm(nn.Linear(hidden_dim // 2, 1)),
|
||||
def _compute_edge_weight(self, edge_index, edge_w, deg):
|
||||
""" """
|
||||
return edge_w.squeeze() / (
|
||||
1 + torch.sqrt(deg[edge_index[0]] * deg[edge_index[1]])
|
||||
)
|
||||
|
||||
def forward(self, x, edge_index, edge_attr, deg):
|
||||
"""
|
||||
TODO: add docstring.
|
||||
"""
|
||||
x_ = self.x_embedding(x)
|
||||
out = self.propagate(edge_index, x=x_, edge_attr=edge_attr, deg=deg)
|
||||
return self.out_net(out)
|
||||
edge_w = self._compute_edge_weight(edge_index, edge_attr, deg)
|
||||
return self.propagate(edge_index, x=x, edge_weight=edge_w, deg=deg)
|
||||
|
||||
def message(self, x_j, edge_attr):
|
||||
"""
|
||||
TODO: add docstring.
|
||||
"""
|
||||
return x_j * edge_attr.view(-1, 1)
|
||||
def message(self, x_j, edge_weight):
|
||||
return edge_weight.view(-1, 1) * x_j
|
||||
|
||||
def update(self, aggr_out, _):
|
||||
"""
|
||||
TODO: add docstring.
|
||||
"""
|
||||
return aggr_out
|
||||
|
||||
def aggregate(self, inputs, index, deg):
|
||||
"""
|
||||
TODO: add docstring.
|
||||
"""
|
||||
out = super().aggregate(inputs, index)
|
||||
deg = deg + 1e-7
|
||||
return out / deg.view(-1, 1)
|
||||
class CorrectionNet(nn.Module):
|
||||
def __init__(self, hidden_dim=8):
|
||||
super().__init__()
|
||||
self.enc = nn.Sequential(
|
||||
nn.Linear(1, hidden_dim // 2),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_dim // 2, hidden_dim),
|
||||
nn.ReLU(),
|
||||
)
|
||||
self.model = GCNConvLayer(hidden_dim, hidden_dim)
|
||||
self.dec = nn.Sequential(
|
||||
nn.Linear(hidden_dim, hidden_dim // 2),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_dim // 2, 1),
|
||||
nn.ReLU(),
|
||||
)
|
||||
|
||||
def forward(self, x, edge_index, edge_attr, deg):
|
||||
h = self.enc(x)
|
||||
h = self.model(h, edge_index, edge_attr, deg)
|
||||
out = self.dec(h)
|
||||
return out
|
||||
|
||||
Reference in New Issue
Block a user