try a new model
This commit is contained in:
@@ -75,9 +75,6 @@ class GraphSolver(LightningModule):
|
||||
def _compute_loss(self, x, y):
|
||||
return self.loss(x, y)
|
||||
|
||||
def _preprocess_batch(self, batch: Batch):
|
||||
return batch.x, batch.y, batch.c, batch.edge_index, batch.edge_attr
|
||||
|
||||
def _log_loss(self, loss, batch, stage: str):
|
||||
self.log(
|
||||
f"{stage}/loss",
|
||||
@@ -115,19 +112,25 @@ class GraphSolver(LightningModule):
|
||||
self.manual_backward(loss / max_acc_iters)
|
||||
return loss_.item()
|
||||
|
||||
def _preprocess_batch(self, batch: Batch):
|
||||
x, y, c, edge_index, edge_attr = (
|
||||
batch.x,
|
||||
batch.y,
|
||||
batch.c,
|
||||
batch.edge_index,
|
||||
batch.edge_attr,
|
||||
)
|
||||
edge_attr = 1 / edge_attr
|
||||
c_ij = self._compute_c_ij(c, edge_index)
|
||||
edge_attr = edge_attr * c_ij
|
||||
return x, y, edge_index, edge_attr
|
||||
|
||||
def training_step(self, batch: Batch, batch_idx: int):
|
||||
optim = self.optimizers()
|
||||
optim.zero_grad()
|
||||
x, y, c, edge_index, edge_attr = self._preprocess_batch(batch)
|
||||
x, y, edge_index, edge_attr = self._preprocess_batch(batch)
|
||||
|
||||
edge_w = 1 / edge_attr[:, -1]
|
||||
c_ij = self._compute_c_ij(c, edge_index)
|
||||
edge_w = edge_w * c_ij
|
||||
deg = self._compute_deg(edge_index, edge_w, x.size(0))
|
||||
|
||||
edge_attr = torch.cat(
|
||||
[edge_attr, edge_w.unsqueeze(-1), c_ij.unsqueeze(-1)], dim=1
|
||||
)
|
||||
deg = self._compute_deg(edge_index, edge_attr, x.size(0))
|
||||
losses = []
|
||||
acc_loss, acc_it = 0, 0
|
||||
max_acc_iters = (
|
||||
@@ -139,7 +142,7 @@ class GraphSolver(LightningModule):
|
||||
out = self._compute_model_steps(
|
||||
x,
|
||||
edge_index,
|
||||
edge_attr,
|
||||
edge_attr.unsqueeze(-1),
|
||||
deg,
|
||||
batch.boundary_mask,
|
||||
batch.boundary_values,
|
||||
@@ -199,21 +202,15 @@ class GraphSolver(LightningModule):
|
||||
return super().on_train_epoch_end()
|
||||
|
||||
def validation_step(self, batch: Batch, _):
|
||||
x, y, c, edge_index, edge_attr = self._preprocess_batch(batch)
|
||||
x, y, edge_index, edge_attr = self._preprocess_batch(batch)
|
||||
|
||||
edge_w = 1 / edge_attr[:, -1]
|
||||
c_ij = self._compute_c_ij(c, edge_index)
|
||||
edge_w = edge_w * c_ij
|
||||
deg = self._compute_deg(edge_index, edge_w, x.size(0))
|
||||
deg = self._compute_deg(edge_index, edge_attr, x.size(0))
|
||||
|
||||
edge_attr = torch.cat(
|
||||
[edge_attr, edge_w.unsqueeze(-1), c_ij.unsqueeze(-1)], dim=1
|
||||
)
|
||||
for i in range(self.current_iters):
|
||||
out = self._compute_model_steps(
|
||||
x,
|
||||
edge_index,
|
||||
edge_attr,
|
||||
edge_attr.unsqueeze(-1),
|
||||
deg,
|
||||
batch.boundary_mask,
|
||||
batch.boundary_values,
|
||||
@@ -252,20 +249,15 @@ class GraphSolver(LightningModule):
|
||||
# loss = self._compute_loss(y_pred, y)
|
||||
# # _plot_mesh(batch.pos, y, y_pred, batch.batch)
|
||||
# self._log_loss(loss, batch, "test")
|
||||
x, y, c, edge_index, edge_attr = self._preprocess_batch(batch)
|
||||
edge_w = 1 / edge_attr[:, -1]
|
||||
c_ij = self._compute_c_ij(c, edge_index)
|
||||
edge_w = edge_w * c_ij
|
||||
deg = self._compute_deg(edge_index, edge_w, x.size(0))
|
||||
x, y, edge_index, edge_attr = self._preprocess_batch(batch)
|
||||
|
||||
deg = self._compute_deg(edge_index, edge_attr, x.size(0))
|
||||
|
||||
edge_attr = torch.cat(
|
||||
[edge_attr, edge_w.unsqueeze(-1), c_ij.unsqueeze(-1)], dim=1
|
||||
)
|
||||
for i in range(self.max_iters):
|
||||
out = self._compute_model_steps(
|
||||
x,
|
||||
edge_index,
|
||||
edge_attr,
|
||||
edge_attr.unsqueeze(-1),
|
||||
deg,
|
||||
batch.boundary_mask,
|
||||
batch.boundary_values,
|
||||
@@ -278,7 +270,6 @@ class GraphSolver(LightningModule):
|
||||
loss = self.loss(out, y)
|
||||
|
||||
self._log_loss(loss, batch, "test")
|
||||
x = u
|
||||
self.log(
|
||||
"test/iterations",
|
||||
i + 1,
|
||||
|
||||
Reference in New Issue
Block a user