add final loss and change model
This commit is contained in:
@@ -65,7 +65,7 @@ class GraphSolver(LightningModule):
|
|||||||
self.current_iters = start_iters
|
self.current_iters = start_iters
|
||||||
self.accumulation_iters = accumulation_iters
|
self.accumulation_iters = accumulation_iters
|
||||||
self.automatic_optimization = False
|
self.automatic_optimization = False
|
||||||
self.threshold = 1e-2
|
self.threshold = 1e-5
|
||||||
|
|
||||||
def _compute_deg(self, edge_index, edge_attr, num_nodes):
|
def _compute_deg(self, edge_index, edge_attr, num_nodes):
|
||||||
deg = torch.zeros(num_nodes, device=edge_index.device)
|
deg = torch.zeros(num_nodes, device=edge_index.device)
|
||||||
@@ -102,14 +102,14 @@ class GraphSolver(LightningModule):
|
|||||||
|
|
||||||
def _check_convergence(self, out, x):
|
def _check_convergence(self, out, x):
|
||||||
residual_norm = torch.norm(out - x)
|
residual_norm = torch.norm(out - x)
|
||||||
if residual_norm < self.threshold:
|
if residual_norm < self.threshold * torch.norm(x):
|
||||||
return True
|
return True
|
||||||
return False
|
return False
|
||||||
|
|
||||||
def accumulate_gradients(self, losses, max_acc_iters):
|
def accumulate_gradients(self, losses, max_acc_iters):
|
||||||
loss_ = torch.stack(losses, dim=0).mean()
|
loss_ = torch.stack(losses, dim=0).mean()
|
||||||
loss = loss_ / self.accumulation_iters
|
loss = 0.5 * loss_ / self.accumulation_iters
|
||||||
self.manual_backward(loss / max_acc_iters)
|
self.manual_backward(loss / max_acc_iters, retain_graph=True)
|
||||||
return loss_.item()
|
return loss_.item()
|
||||||
|
|
||||||
def _preprocess_batch(self, batch: Batch):
|
def _preprocess_batch(self, batch: Batch):
|
||||||
@@ -177,7 +177,9 @@ class GraphSolver(LightningModule):
|
|||||||
acc_loss = acc_loss + loss
|
acc_loss = acc_loss + loss
|
||||||
|
|
||||||
x = out
|
x = out
|
||||||
|
if i % self.accumulation_iters != 0:
|
||||||
|
loss = self.loss(out, y)
|
||||||
|
loss.backward()
|
||||||
optim.step()
|
optim.step()
|
||||||
optim.zero_grad()
|
optim.zero_grad()
|
||||||
|
|
||||||
@@ -190,6 +192,15 @@ class GraphSolver(LightningModule):
|
|||||||
prog_bar=True,
|
prog_bar=True,
|
||||||
batch_size=int(batch.num_graphs),
|
batch_size=int(batch.num_graphs),
|
||||||
)
|
)
|
||||||
|
if hasattr(self.model, "p"):
|
||||||
|
self.log(
|
||||||
|
"train/p",
|
||||||
|
self.model.p,
|
||||||
|
on_step=False,
|
||||||
|
on_epoch=True,
|
||||||
|
prog_bar=True,
|
||||||
|
batch_size=int(batch.num_graphs),
|
||||||
|
)
|
||||||
|
|
||||||
def on_train_epoch_end(self):
|
def on_train_epoch_end(self):
|
||||||
if self.curriculum_learning:
|
if self.curriculum_learning:
|
||||||
@@ -220,7 +231,7 @@ class GraphSolver(LightningModule):
|
|||||||
if converged:
|
if converged:
|
||||||
break
|
break
|
||||||
x = out
|
x = out
|
||||||
loss = self.loss(out, y)
|
loss = 0.5 * self.loss(out, y)
|
||||||
self._log_loss(loss, batch, "val")
|
self._log_loss(loss, batch, "val")
|
||||||
self.log(
|
self.log(
|
||||||
"val/iterations",
|
"val/iterations",
|
||||||
@@ -232,23 +243,6 @@ class GraphSolver(LightningModule):
|
|||||||
)
|
)
|
||||||
|
|
||||||
def test_step(self, batch: Batch, _):
|
def test_step(self, batch: Batch, _):
|
||||||
# x, y, c, edge_index, edge_attr = self._preprocess_batch(batch)
|
|
||||||
# y_pred, _ = self.model(
|
|
||||||
# x,
|
|
||||||
# edge_index,
|
|
||||||
# edge_attr,
|
|
||||||
# c,
|
|
||||||
# batch.boundary_mask,
|
|
||||||
# batch.boundary_values,
|
|
||||||
# y=None,
|
|
||||||
# loss_fn=None,
|
|
||||||
# max_iters=1000,
|
|
||||||
# plot_results=True,
|
|
||||||
# batch=batch,
|
|
||||||
# )
|
|
||||||
# loss = self._compute_loss(y_pred, y)
|
|
||||||
# # _plot_mesh(batch.pos, y, y_pred, batch.batch)
|
|
||||||
# self._log_loss(loss, batch, "test")
|
|
||||||
x, y, edge_index, edge_attr = self._preprocess_batch(batch)
|
x, y, edge_index, edge_attr = self._preprocess_batch(batch)
|
||||||
|
|
||||||
deg = self._compute_deg(edge_index, edge_attr, x.size(0))
|
deg = self._compute_deg(edge_index, edge_attr, x.size(0))
|
||||||
@@ -263,7 +257,7 @@ class GraphSolver(LightningModule):
|
|||||||
batch.boundary_values,
|
batch.boundary_values,
|
||||||
)
|
)
|
||||||
converged = self._check_convergence(out, x)
|
converged = self._check_convergence(out, x)
|
||||||
_plot_mesh(batch.pos, y, out, batch.batch, i)
|
# _plot_mesh(batch.pos, y, out, batch.batch, i)
|
||||||
if converged:
|
if converged:
|
||||||
break
|
break
|
||||||
x = out
|
x = out
|
||||||
|
|||||||
@@ -17,11 +17,11 @@ class FiniteDifferenceStep(MessagePassing):
|
|||||||
spectral_norm(nn.Linear(hidden_dim // 2, hidden_dim)),
|
spectral_norm(nn.Linear(hidden_dim // 2, hidden_dim)),
|
||||||
)
|
)
|
||||||
|
|
||||||
self.update_net = nn.Sequential(
|
# self.update_net = nn.Sequential(
|
||||||
spectral_norm(nn.Linear(2 * hidden_dim, hidden_dim)),
|
# spectral_norm(nn.Linear(2 * hidden_dim, hidden_dim)),
|
||||||
nn.GELU(),
|
# nn.GELU(),
|
||||||
spectral_norm(nn.Linear(hidden_dim, hidden_dim)),
|
# spectral_norm(nn.Linear(hidden_dim, hidden_dim)),
|
||||||
)
|
# )
|
||||||
|
|
||||||
self.out_net = nn.Sequential(
|
self.out_net = nn.Sequential(
|
||||||
spectral_norm(nn.Linear(hidden_dim, hidden_dim // 2)),
|
spectral_norm(nn.Linear(hidden_dim, hidden_dim // 2)),
|
||||||
@@ -47,8 +47,9 @@ class FiniteDifferenceStep(MessagePassing):
|
|||||||
"""
|
"""
|
||||||
TODO: add docstring.
|
TODO: add docstring.
|
||||||
"""
|
"""
|
||||||
update_input = torch.cat([x, aggr_out], dim=-1)
|
# update_input = torch.cat([x, aggr_out], dim=-1)
|
||||||
return self.update_net(update_input)
|
# return self.update_net(update_input)
|
||||||
|
return aggr_out
|
||||||
|
|
||||||
def aggregate(self, inputs, index, deg):
|
def aggregate(self, inputs, index, deg):
|
||||||
"""
|
"""
|
||||||
|
|||||||
Reference in New Issue
Block a user