fix module and model + add curriculum callback

This commit is contained in:
Filippo Olivo
2025-12-09 09:18:36 +01:00
parent 2935785b31
commit f2ce282a68
4 changed files with 243 additions and 111 deletions

View File

@@ -1,6 +1,7 @@
import torch
import torch.nn as nn
from torch_geometric.nn import MessagePassing
from torch.nn.utils import spectral_norm
class DiffusionLayer(MessagePassing):
@@ -13,28 +14,34 @@ class DiffusionLayer(MessagePassing):
channels: int,
**kwargs,
):
super().__init__(aggr="add", **kwargs)
self.dt = nn.Parameter(torch.tensor(1e-4))
self.conductivity_net = nn.Sequential(
nn.Linear(channels, channels, bias=False),
spectral_norm(nn.Linear(channels, channels, bias=False)),
nn.GELU(),
nn.Linear(channels, channels, bias=False),
spectral_norm(nn.Linear(channels, channels, bias=False)),
)
self.phys_encoder = nn.Sequential(
nn.Linear(1, 8, bias=False),
spectral_norm(nn.Linear(1, 8, bias=True)),
nn.Tanh(),
nn.Linear(8, 1, bias=False),
spectral_norm(nn.Linear(8, 1, bias=True)),
nn.Softplus(),
)
self.alpha_param = nn.Parameter(torch.tensor(1e-2))
@property
def alpha(self):
return torch.clamp(self.alpha_param, min=1e-5, max=1.0)
def forward(self, x, edge_index, edge_weight, conductivity):
edge_weight = edge_weight.unsqueeze(-1)
conductance = self.phys_encoder(edge_weight)
net_flux = self.propagate(edge_index, x=x, conductance=conductance)
return x + ((net_flux) * self.dt)
# return (1-self.alpha) * x + self.alpha * net_flux
# return net_flux + x
return x + self.alpha * net_flux
def message(self, x_i, x_j, conductance):
delta = x_j - x_i
@@ -44,15 +51,21 @@ class DiffusionLayer(MessagePassing):
class DiffusionNet(nn.Module):
def __init__(self, input_dim=1, output_dim=1, hidden_dim=8, n_layers=4):
def __init__(
self,
input_dim=1,
output_dim=1,
hidden_dim=8,
n_layers=4,
shared_weights=False,
):
super().__init__()
# Encoder: Projects input temperature to hidden feature space
self.enc = nn.Sequential(
nn.Linear(input_dim, hidden_dim, bias=True),
nn.GELU(),
nn.Linear(hidden_dim, hidden_dim, bias=True),
spectral_norm(nn.Linear(input_dim, hidden_dim, bias=True)),
nn.GELU(),
spectral_norm(nn.Linear(hidden_dim, hidden_dim, bias=True)),
)
self.scale_x = nn.Parameter(torch.zeros(hidden_dim))
@@ -60,27 +73,40 @@ class DiffusionNet(nn.Module):
# Scale parameters for conditioning
self.scale_edge_attr = nn.Parameter(torch.zeros(1))
# Stack of Diffusion Layers
self.layers = torch.nn.ModuleList(
[DiffusionLayer(hidden_dim) for _ in range(n_layers)]
)
# If shared_weights is True, use the same DiffusionLayer multiple times
if shared_weights:
diffusion_layer = DiffusionLayer(hidden_dim)
self.layers = torch.nn.ModuleList(
[diffusion_layer for _ in range(n_layers)]
)
# If shared_weights is False, use separate DiffusionLayers
else:
# Stack of Diffusion Layers
self.layers = torch.nn.ModuleList(
[DiffusionLayer(hidden_dim) for _ in range(n_layers)]
)
# Decoder: Projects hidden features back to Temperature space
self.dec = nn.Sequential(
nn.Linear(hidden_dim, hidden_dim, bias=True),
spectral_norm(nn.Linear(hidden_dim, hidden_dim, bias=True)),
nn.GELU(),
nn.Linear(hidden_dim, output_dim, bias=True),
spectral_norm(nn.Linear(hidden_dim, output_dim, bias=True)),
nn.Softplus(), # Ensure positive temperature output
)
self.func = torch.nn.GELU()
self.dt_param = nn.Parameter(torch.tensor(1e-2))
@property
def dt(self):
return torch.clamp(self.dt_param, min=1e-5, max=0.5)
def forward(self, x, edge_index, edge_attr, conductivity):
# 1. Global Residual Connection setup
# We save the input to add it back at the very end.
# The network learns the correction (Delta T), not the absolute T.
x_input = x
# 2. Encode
h = self.enc(x) * torch.exp(self.scale_x)
@@ -98,5 +124,4 @@ class DiffusionNet(nn.Module):
# 6. Final Update (Explicit Euler Step)
# T_new = T_old + Correction
# return x_input + delta_x
return delta_x
return delta_x + x_input * self.dt