update GNO and PointNet
This commit is contained in:
@@ -180,7 +180,6 @@ class GatingGNO(nn.Module):
|
|||||||
x = blk(x, c, edge_index, edge_attr=edge_attr)
|
x = blk(x, c, edge_index, edge_attr=edge_attr)
|
||||||
if plot_results:
|
if plot_results:
|
||||||
x_ = self.dec(x)
|
x_ = self.dec(x)
|
||||||
assert bc == x[boundary_mask]
|
|
||||||
plot_results_fn(x_, pos, i * _, batch=batch)
|
plot_results_fn(x_, pos, i * _, batch=batch)
|
||||||
|
|
||||||
return self.dec(x)
|
return self.dec(x)
|
||||||
|
|||||||
@@ -108,14 +108,14 @@ class MLP(torch.nn.Module):
|
|||||||
tmp_layers.append(self._output_dim)
|
tmp_layers.append(self._output_dim)
|
||||||
|
|
||||||
self._layers = []
|
self._layers = []
|
||||||
self._batchnorm = []
|
self._LayerNorm = []
|
||||||
for i in range(len(tmp_layers) - 1):
|
for i in range(len(tmp_layers) - 1):
|
||||||
|
|
||||||
self._layers.append(
|
self._layers.append(
|
||||||
self.spect_norm(nn.Linear(tmp_layers[i], tmp_layers[i + 1]))
|
self.spect_norm(nn.Linear(tmp_layers[i], tmp_layers[i + 1]))
|
||||||
)
|
)
|
||||||
|
|
||||||
self._batchnorm.append(nn.LazyBatchNorm1d())
|
self._LayerNorm.append(nn.LazyLayerNorm())
|
||||||
|
|
||||||
if isinstance(func, list):
|
if isinstance(func, list):
|
||||||
self._functions = func
|
self._functions = func
|
||||||
@@ -124,7 +124,7 @@ class MLP(torch.nn.Module):
|
|||||||
|
|
||||||
unique_list = []
|
unique_list = []
|
||||||
for layer, func, bnorm in zip(
|
for layer, func, bnorm in zip(
|
||||||
self._layers[:-1], self._functions, self._batchnorm
|
self._layers[:-1], self._functions, self._LayerNorm
|
||||||
):
|
):
|
||||||
|
|
||||||
unique_list.append(layer)
|
unique_list.append(layer)
|
||||||
@@ -208,7 +208,7 @@ class TNet(nn.Module):
|
|||||||
)
|
)
|
||||||
|
|
||||||
self._function = function()
|
self._function = function()
|
||||||
self._bn1 = nn.LazyBatchNorm1d()
|
self._bn1 = nn.LazyLayerNorm()
|
||||||
|
|
||||||
def forward(self, X):
|
def forward(self, X):
|
||||||
"""Forward pass for T-Net
|
"""Forward pass for T-Net
|
||||||
@@ -299,9 +299,9 @@ class PointNet(nn.Module):
|
|||||||
self._tnet_feature = TNet(input_dim=64)
|
self._tnet_feature = TNet(input_dim=64)
|
||||||
|
|
||||||
self._function = function()
|
self._function = function()
|
||||||
self._bn1 = nn.LazyBatchNorm1d()
|
self._bn1 = nn.LazyLayerNorm()
|
||||||
self._bn2 = nn.LazyBatchNorm1d()
|
self._bn2 = nn.LazyLayerNorm()
|
||||||
self._bn3 = nn.LazyBatchNorm1d()
|
self._bn3 = nn.LazyLayerNorm()
|
||||||
|
|
||||||
def concat(self, embedding, input_):
|
def concat(self, embedding, input_):
|
||||||
"""Returns concatenation of global and local features for Point-Net
|
"""Returns concatenation of global and local features for Point-Net
|
||||||
@@ -370,205 +370,3 @@ class PointNet(nn.Module):
|
|||||||
X = self._mlp4(X)
|
X = self._mlp4(X)
|
||||||
|
|
||||||
return X
|
return X
|
||||||
|
|
||||||
|
|
||||||
class ConvTNet(nn.Module):
|
|
||||||
"""T-Net base class. Implementation of T-Network with convolutional layers.
|
|
||||||
|
|
||||||
Reference: Ali Kashefi et al. https://arxiv.org/abs/2208.13434
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(self, input_dim):
|
|
||||||
"""T-Net block constructor
|
|
||||||
|
|
||||||
:param input_dim: input dimension of point cloud
|
|
||||||
:type input_dim: int
|
|
||||||
"""
|
|
||||||
super().__init__()
|
|
||||||
|
|
||||||
function = nn.Tanh
|
|
||||||
self._function = function()
|
|
||||||
|
|
||||||
self._block1 = nn.Sequential(
|
|
||||||
nn.Conv1d(input_dim, 64, 1),
|
|
||||||
nn.BatchNorm1d(64),
|
|
||||||
self._function,
|
|
||||||
nn.Conv1d(64, 128, 1),
|
|
||||||
nn.BatchNorm1d(128),
|
|
||||||
self._function,
|
|
||||||
nn.Conv1d(128, 1024, 1),
|
|
||||||
nn.BatchNorm1d(1024),
|
|
||||||
self._function,
|
|
||||||
)
|
|
||||||
|
|
||||||
self._block2 = MLP(
|
|
||||||
input_dim=1024,
|
|
||||||
output_dim=input_dim * input_dim,
|
|
||||||
layers=[512, 256],
|
|
||||||
func=function,
|
|
||||||
batch_norm=True,
|
|
||||||
)
|
|
||||||
|
|
||||||
def forward(self, X):
|
|
||||||
"""Forward pass for T-Net
|
|
||||||
|
|
||||||
:param X: input tensor, shape [batch, $input_{dim}$, N]
|
|
||||||
with batch the batch size, N number of points and $input_{dim}$
|
|
||||||
the input dimension of the point cloud.
|
|
||||||
:type X: torch.tensor
|
|
||||||
:return: output affine matrix transformation, shape
|
|
||||||
[batch, $input_{dim} \times input_{dim}$] with batch
|
|
||||||
the batch size and $input_{dim}$ the input dimension
|
|
||||||
of the point cloud.
|
|
||||||
:rtype: torch.tensor
|
|
||||||
"""
|
|
||||||
|
|
||||||
batch, input_dim = X.shape[0], X.shape[1]
|
|
||||||
|
|
||||||
# encoding using first MLP
|
|
||||||
X = self._block1(X)
|
|
||||||
|
|
||||||
# applying symmetric function to aggregate information (using max as default)
|
|
||||||
X, _ = torch.max(X, dim=-1)
|
|
||||||
|
|
||||||
# decoding using third MLP
|
|
||||||
X = self._block2(X)
|
|
||||||
|
|
||||||
return X.reshape(batch, input_dim, input_dim)
|
|
||||||
|
|
||||||
|
|
||||||
class ConvPointNet(nn.Module):
|
|
||||||
"""Point-Net base class. Implementation of Point Network for segmentation.
|
|
||||||
|
|
||||||
Reference: Ali Kashefi et al. https://arxiv.org/abs/2208.13434
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(self, input_dim, output_dim, tnet=False):
|
|
||||||
"""Point-Net block constructor
|
|
||||||
|
|
||||||
:param input_dim: input dimension of point cloud
|
|
||||||
:type input_dim: int
|
|
||||||
:param output_dim: output dimension of point cloud
|
|
||||||
:type output_dim: int
|
|
||||||
:param tnet: apply T-Net transformation, defaults to False
|
|
||||||
:type tnet: bool, optional
|
|
||||||
"""
|
|
||||||
super().__init__()
|
|
||||||
|
|
||||||
self._function = nn.Tanh()
|
|
||||||
self._use_tnet = tnet
|
|
||||||
|
|
||||||
self._block1 = nn.Sequential(
|
|
||||||
nn.Conv1d(input_dim, 64, 1),
|
|
||||||
nn.BatchNorm1d(64),
|
|
||||||
self._function,
|
|
||||||
nn.Conv1d(64, 64, 1),
|
|
||||||
nn.BatchNorm1d(64),
|
|
||||||
self._function,
|
|
||||||
)
|
|
||||||
|
|
||||||
self._block2 = nn.Sequential(
|
|
||||||
nn.Conv1d(64, 64, 1),
|
|
||||||
nn.BatchNorm1d(64),
|
|
||||||
self._function,
|
|
||||||
nn.Conv1d(64, 128, 1),
|
|
||||||
nn.BatchNorm1d(128),
|
|
||||||
self._function,
|
|
||||||
nn.Conv1d(128, 1024, 1),
|
|
||||||
nn.BatchNorm1d(1024),
|
|
||||||
self._function,
|
|
||||||
)
|
|
||||||
|
|
||||||
self._block3 = nn.Sequential(
|
|
||||||
nn.Conv1d(1088, 512, 1),
|
|
||||||
nn.BatchNorm1d(512),
|
|
||||||
self._function,
|
|
||||||
nn.Conv1d(512, 256, 1),
|
|
||||||
nn.BatchNorm1d(256),
|
|
||||||
self._function,
|
|
||||||
nn.Conv1d(256, 128, 1),
|
|
||||||
nn.BatchNorm1d(128),
|
|
||||||
self._function,
|
|
||||||
)
|
|
||||||
|
|
||||||
self._block4 = nn.Conv1d(128, output_dim, 1)
|
|
||||||
|
|
||||||
if self._use_tnet:
|
|
||||||
self._tnet_transform = ConvTNet(input_dim=input_dim)
|
|
||||||
self._tnet_feature = ConvTNet(input_dim=64)
|
|
||||||
|
|
||||||
def concat(self, embedding, input_):
|
|
||||||
"""
|
|
||||||
Returns concatenation of global and local features for Point-Net
|
|
||||||
|
|
||||||
:param embedding: global features of Point-Net, shape [batch, $input_{dim}$]
|
|
||||||
with batch the batch size and $input_{dim}$ the input dimension
|
|
||||||
of the point cloud.
|
|
||||||
:type embedding: torch.tensor
|
|
||||||
:param input_: local features of Point-Net, shape [batch, N, $input_{dim}$]
|
|
||||||
with batch the batch size, N number of points and $input_{dim}$
|
|
||||||
the input dimension of the point cloud.
|
|
||||||
:type input_: torch.tensor
|
|
||||||
:return: concatenation vector, shape [batch, N, $input_{dim}$]
|
|
||||||
with batch the batch size, N number of points and $input_{dim}$
|
|
||||||
:rtype: torch.tensor
|
|
||||||
"""
|
|
||||||
n_points = input_.shape[-1]
|
|
||||||
embedding = embedding.unsqueeze(2).repeat(1, 1, n_points)
|
|
||||||
return torch.cat([embedding, input_], dim=1)
|
|
||||||
|
|
||||||
def forward(self, X):
|
|
||||||
"""Forward pass for Point-Net
|
|
||||||
|
|
||||||
:param X: input tensor, shape [batch, N, $input_{dim}$]
|
|
||||||
with batch the batch size, N number of points and $input_{dim}$
|
|
||||||
the input dimension of the point cloud.
|
|
||||||
:type X: torch.tensor
|
|
||||||
:return: segmentation vector, shape [batch, N, $output_{dim}$]
|
|
||||||
with batch the batch size, N number of points and $output_{dim}$
|
|
||||||
the output dimension of the point cloud.
|
|
||||||
:rtype: torch.tensor
|
|
||||||
"""
|
|
||||||
|
|
||||||
# permuting indeces
|
|
||||||
X = X.permute(0, 2, 1)
|
|
||||||
|
|
||||||
# using transform tnet if needed
|
|
||||||
if self._use_tnet:
|
|
||||||
transform = self._tnet_transform(X)
|
|
||||||
X = X.transpose(2, 1)
|
|
||||||
X = torch.matmul(X, transform)
|
|
||||||
X = X.transpose(2, 1)
|
|
||||||
|
|
||||||
# encoding using first MLP
|
|
||||||
X = self._block1(X)
|
|
||||||
|
|
||||||
# using transform tnet if needed
|
|
||||||
if self._use_tnet:
|
|
||||||
transform = self._tnet_feature(X)
|
|
||||||
X = X.transpose(2, 1)
|
|
||||||
X = torch.matmul(X, transform)
|
|
||||||
X = X.transpose(2, 1)
|
|
||||||
|
|
||||||
# saving latent representation for later concatanation
|
|
||||||
latent = X
|
|
||||||
|
|
||||||
# encoding using second MLP
|
|
||||||
X = self._block2(X)
|
|
||||||
|
|
||||||
# applying symmetric function to aggregate information (using max as default)
|
|
||||||
X, _ = torch.max(X, dim=-1)
|
|
||||||
|
|
||||||
# concatenating with latent vector
|
|
||||||
X = self.concat(X, latent)
|
|
||||||
|
|
||||||
# decoding using third MLP
|
|
||||||
X = self._block3(X)
|
|
||||||
|
|
||||||
# decoding using fourth MLP
|
|
||||||
X = self._block4(X)
|
|
||||||
|
|
||||||
# permuting indeces
|
|
||||||
X = X.permute(0, 2, 1)
|
|
||||||
|
|
||||||
return X
|
|
||||||
|
|||||||
Reference in New Issue
Block a user