# lightning.pytorch==2.5.5 seed_everything: 1999 trainer: accelerator: gpu strategy: auto devices: 1 num_nodes: 1 precision: null logger: - class_path: lightning.pytorch.loggers.WandbLogger init_args: save_dir: logs.autoregressive.wandb project: "thermal-conduction-unsteady" name: "standard" callbacks: - class_path: lightning.pytorch.callbacks.ModelCheckpoint init_args: dirpath: logs.autoregressive.wandb/standard/checkpoints monitor: val/loss mode: min save_top_k: 1 filename: best-checkpoint - class_path: lightning.pytorch.callbacks.EarlyStopping init_args: monitor: val/loss mode: min patience: 10 verbose: false max_epochs: 1000 min_epochs: null max_steps: -1 min_steps: null overfit_batches: 0.0 log_every_n_steps: null accumulate_grad_batches: 1 default_root_dir: null model: class_path: ThermalSolver.autoregressive_module.GraphSolver init_args: model_class_path: ThermalSolver.model.diffusion_net.DiffusionNet model_init_args: input_dim: 1 hidden_dim: 8 output_dim: 1 n_layers: 8 unrolling_steps: 5 data: class_path: ThermalSolver.graph_datamodule_unsteady.GraphDataModule init_args: hf_repo: "SISSAmathLab/thermal-conduction-unsteady" split_name: "100_samples_easy_refined" batch_size: 32 train_size: 0.7 val_size: 0.2 test_size: 0.1 build_radial_graph: false remove_boundary_edges: true start_unrolling_steps: 5 optimizer: null lr_scheduler: null