import torch import torch.nn as nn from torch_geometric.nn import MessagePassing from tqdm import tqdm class FiniteDifferenceStep(MessagePassing): """ TODO: add docstring. """ def __init__( self, aggr: str = "add", normalize: bool = True, root_weight: float = 1.0, ): super().__init__(aggr=aggr) self.normalize = normalize assert ( aggr == "add" ), "Per somme pesate, l'aggregazione deve essere 'add'." self.root_weight = float(root_weight) def forward(self, x, edge_index, edge_weight, deg): """ TODO: add docstring. """ out = self.propagate(edge_index, x=x, edge_weight=edge_weight, deg=deg) return out def message(self, x_j, edge_weight): """ TODO: add docstring. """ return edge_weight.view(-1, 1) * x_j def aggregate(self, inputs, index, deg): """ TODO: add docstring. """ out = super().aggregate(inputs, index) deg = deg + 1e-7 return out / deg.view(-1, 1) def update(self, aggr_out, x): """ TODO: add docstring. """ return self.root_weight * aggr_out + (1 - self.root_weight) * x class GraphFiniteDifference(nn.Module): """ TODO: add docstring. """ def __init__(self, max_iters: int = 1000, threshold: float = 1e-4): """ TODO: add docstring. """ super().__init__() self.max_iters = max_iters self.threshold = threshold self.fd_step = FiniteDifferenceStep( aggr="add", normalize=True, root_weight=1.0 ) @staticmethod def _compute_deg(edge_index, edge_weight, num_nodes): """ TODO: add docstring. """ deg = torch.zeros(num_nodes, device=edge_index.device) deg = deg.scatter_add(0, edge_index[1], edge_weight) return deg + 1e-7 @staticmethod def _compute_c_ij(c, edge_index): """ TODO: add docstring. """ return (0.5 * (c[edge_index[0]] + c[edge_index[1]])).squeeze() def forward( self, x, edge_index, edge_weight, c, boundary_mask, boundary_values ): """ TODO: add docstring. """ c_ij = self._compute_c_ij(c, edge_index) edge_weight = edge_weight * c_ij deg = self._compute_deg(edge_index, edge_weight, x.size(0)) conv_thres = self.threshold * torch.norm(x) for _i in tqdm(range(self.max_iters)): out = self.fd_step(x, edge_index, edge_weight, deg) out[boundary_mask] = boundary_values.unsqueeze(-1) if torch.norm(out - x) < conv_thres: break x = out return out