# lightning.pytorch==2.5.5 seed_everything: 1999 trainer: accelerator: gpu strategy: auto devices: 1 num_nodes: 1 precision: null logger: - class_path: lightning.pytorch.loggers.TensorBoardLogger init_args: save_dir: lightning_logs name: "pointnet" version: null callbacks: - class_path: lightning.pytorch.callbacks.ModelCheckpoint init_args: monitor: val/loss mode: min save_top_k: 1 filename: best-checkpoint - class_path: lightning.pytorch.callbacks.EarlyStopping init_args: monitor: val/loss mode: min patience: 10 verbose: false max_epochs: 200 min_epochs: null max_steps: -1 min_steps: null overfit_batches: 0.0 log_every_n_steps: null inference_mode: true default_root_dir: null accumulate_grad_batches: 2 gradient_clip_val: 1.0 model: class_path: ThermalSolver.point_module.PointSolver init_args: model_class_path: ThermalSolver.model.point_net.PointNet model_init_args: input_dim: 4 output_dim: 1 data: class_path: ThermalSolver.point_datamodule.PointDataModule init_args: hf_repo: "SISSAmathLab/thermal-conduction" split_name: "2000" batch_size: 10 train_size: 0.8 test_size: 0.1 test_size: 0.1 optimizer: null lr_scheduler: null # ckpt_path: lightning_logs/pointnet/version_0/checkpoints/best-checkpoint.ckpt