import torch from tqdm import tqdm from lightning import LightningDataModule from datasets import load_dataset from torch_geometric.data import Data from torch_geometric.loader import DataLoader from torch_geometric.utils import to_undirected from .mesh_data import MeshData import os class GraphDataModule(LightningDataModule): def __init__( self, hf_repo: str, split_name: str, train_size: float = 0.2, val_size: float = 0.1, test_size: float = 0.1, batch_size: int = 32, remove_boundary_edges: bool = True, ): super().__init__() self.hf_repo = hf_repo self.split_name = split_name self.dataset_dict = {} # self.geometry = None self.geometry_dict = {} self.train_size = train_size self.val_size = val_size self.test_size = test_size self.batch_size = batch_size self.remove_boundary_edges = remove_boundary_edges def prepare_data(self): dataset = load_dataset(self.hf_repo, name="snapshots")[self.split_name] geometry = load_dataset(self.hf_repo, name="geometry")[self.split_name] total_len = len(dataset) train_len = int(self.train_size * total_len) valid_len = int(self.val_size * total_len) self.dataset_dict = { "train": dataset.select(range(0, train_len)), "val": dataset.select(range(train_len, train_len + valid_len)), "test": dataset.select(range(train_len + valid_len, total_len)), } self.geometry_dict = { "train": geometry.select(range(0, train_len)), "val": geometry.select(range(train_len, train_len + valid_len)), "test": geometry.select(range(train_len + valid_len, total_len)), } def _compute_boundary_mask( self, bottom_ids, right_ids, top_ids, left_ids, temperature ): left_ids = left_ids[~torch.isin(left_ids, bottom_ids)] right_ids = right_ids[~torch.isin(right_ids, bottom_ids)] left_ids = left_ids[~torch.isin(left_ids, top_ids)] right_ids = right_ids[~torch.isin(right_ids, top_ids)] bottom_bc = temperature[bottom_ids].median() bottom_bc_mask = torch.ones(len(bottom_ids)) * bottom_bc left_bc = temperature[left_ids].median() left_bc_mask = torch.ones(len(left_ids)) * left_bc right_bc = temperature[right_ids].median() right_bc_mask = torch.ones(len(right_ids)) * right_bc boundary_values = torch.cat( [bottom_bc_mask, right_bc_mask, left_bc_mask], dim=0 ) boundary_mask = torch.cat([bottom_ids, right_ids, left_ids], dim=0) return boundary_mask, boundary_values def _build_dataset( self, snapshot: dict, geometry: dict, ) -> Data: conductivity = torch.tensor( snapshot["conductivity"], dtype=torch.float32 ) temperature = torch.tensor(snapshot["temperature"], dtype=torch.float32) edge_index = torch.tensor(geometry["edge_index"], dtype=torch.int64).T pos = torch.tensor(geometry["points"], dtype=torch.float32)[:, :2] bottom_ids = torch.tensor( geometry["bottom_boundary_ids"], dtype=torch.long ) top_ids = torch.tensor(geometry["top_boundary_ids"], dtype=torch.long) left_ids = torch.tensor(geometry["left_boundary_ids"], dtype=torch.long) right_ids = torch.tensor( geometry["right_boundary_ids"], dtype=torch.long ) edge_index = to_undirected(edge_index, num_nodes=pos.size(0)) boundary_mask, boundary_values = self._compute_boundary_mask( bottom_ids, right_ids, top_ids, left_ids, temperature ) if self.remove_boundary_edges: boundary_idx = torch.unique(boundary_mask) edge_index_mask = ~torch.isin(edge_index[1], boundary_idx) edge_index = edge_index[:, edge_index_mask] edge_attr = pos[edge_index[0]] - pos[edge_index[1]] edge_attr = torch.cat( [edge_attr, torch.norm(edge_attr, dim=1).unsqueeze(-1)], dim=1 ) x = torch.zeros_like(temperature, dtype=torch.float32).unsqueeze(-1) if self.remove_boundary_edges: x[boundary_mask] = boundary_values.unsqueeze(-1) return MeshData( x=x, c=conductivity.unsqueeze(-1), edge_index=edge_index, pos=pos, edge_attr=edge_attr, y=temperature.unsqueeze(-1), boundary_mask=boundary_mask, boundary_values=torch.tensor(0), # Fake value (to fix) ) return MeshData( x=torch.rand_like(temperature).unsqueeze(-1), c=conductivity.unsqueeze(-1), edge_index=edge_index, pos=pos, edge_attr=edge_attr, boundary_mask=boundary_mask, boundary_values=boundary_values.unsqueeze(-1), y=temperature.unsqueeze(-1), ) def setup(self, stage: str = None): if stage == "fit" or stage is None: self.train_data = [ self._build_dataset(snap, geom) for snap, geom in tqdm( zip( self.dataset_dict["train"], self.geometry_dict["train"] ), desc="Building train graphs", total=len(self.dataset_dict["train"]), ) ] self.val_data = [ self._build_dataset(snap, geom) for snap, geom in tqdm( zip(self.dataset_dict["val"], self.geometry_dict["val"]), desc="Building val graphs", total=len(self.dataset_dict["val"]), ) ] if stage == "test" or stage is None: self.test_data = [ self._build_dataset(snap, geom) for snap, geom in tqdm( zip(self.dataset_dict["test"], self.geometry_dict["test"]), desc="Building test graphs", total=len(self.dataset_dict["test"]), ) ] def train_dataloader(self): return DataLoader( self.train_data, batch_size=self.batch_size, shuffle=True, num_workers=8, pin_memory=True, ) def val_dataloader(self): return DataLoader( self.val_data, batch_size=self.batch_size, shuffle=False, num_workers=8, pin_memory=True, ) def test_dataloader(self): return DataLoader( self.test_data, batch_size=self.batch_size, shuffle=False, num_workers=8, pin_memory=True, )