# lightning.pytorch==2.5.5 seed_everything: 1999 trainer: accelerator: gpu strategy: auto devices: 1 num_nodes: 1 precision: null logger: - class_path: lightning.pytorch.loggers.WandbLogger init_args: save_dir: logs.autoregressive.wandb project: "thermal-conduction-unsteady-10.steps" name: "16_layer_16_hidden.refined" callbacks: # - class_path: lightning.pytorch.callbacks.ModelCheckpoint # init_args: # dirpath: logs.autoregressive.wandb/16_refined.10_steps/checkpoints # monitor: val/loss # mode: min # save_top_k: 1 # filename: best-checkpoint # - class_path: lightning.pytorch.callbacks.EarlyStopping # init_args: # monitor: val/loss # mode: min # patience: 30 # verbose: false - class_path: ThermalSolver.switch_dataloader_callback.SwitchDataLoaderCallback init_args: increase_unrolling_steps_by: 4 patience: 5 last_patience: 15 max_unrolling_steps: 10 ckpt_path: logs.autoregressive.wandb/10_steps/basic.refined/16_layer_16_hidden/ max_epochs: 1000 min_epochs: null max_steps: -1 min_steps: null overfit_batches: 0.0 log_every_n_steps: 0 accumulate_grad_batches: 1 default_root_dir: null gradient_clip_val: 1.0 model: class_path: ThermalSolver.autoregressive_module.GraphSolver init_args: model_class_path: ThermalSolver.model.diffusion_net.DiffusionNet model_init_args: input_dim: 1 hidden_dim: 16 output_dim: 1 n_layers: 16 unrolling_steps: 2 data: class_path: ThermalSolver.graph_datamodule_unsteady.GraphDataModule init_args: hf_repo: "SISSAmathLab/thermal-conduction-unsteady" split_name: "3_stripes.basic.refined" n_elements: 50 batch_size: 24 train_size: 0.7 val_size: 0.2 test_size: 0.1 build_radial_graph: false remove_boundary_edges: true unrolling_steps: 2 min_normalized_diff: 1e-4 optimizer: null lr_scheduler: null