import torch from lightning import LightningModule from torch_geometric.data import Batch import importlib def import_class(class_path: str): module_path, class_name = class_path.rsplit(".", 1) # split last dot module = importlib.import_module(module_path) # import the module cls = getattr(module, class_name) # get the class return cls class GraphSolver(LightningModule): def __init__( self, model_class_path: str, model_init_args: dict, loss: torch.nn.Module = None, unrolling_steps: int = 48, ): super().__init__() self.model = import_class(model_class_path)(**model_init_args) self.loss = loss if loss is not None else torch.nn.MSELoss() self.unrolling_steps = unrolling_steps def forward( self, x: torch.Tensor, c: torch.Tensor, boundary: torch.Tensor, boundary_mask: torch.Tensor, edge_index: torch.Tensor, edge_attr: torch.Tensor, unrolling_steps: int = None, ): return self.model( x, c, boundary, boundary_mask, edge_index, edge_attr, unrolling_steps, ) def _compute_loss(self, x, y): return self.loss(x, y) def _preprocess_batch(self, batch: Batch): return batch.x, batch.y, batch.c, batch.edge_index, batch.edge_attr def _log_loss(self, loss, batch, stage: str): self.log( f"{stage}/loss", loss, on_step=False, on_epoch=True, prog_bar=True, batch_size=int(batch.num_graphs), ) return loss def training_step(self, batch: Batch, _): x, y, c, edge_index, edge_attr = self._preprocess_batch(batch) y_pred = self( x, c, batch.boundary_values, batch.boundary_mask, edge_index=edge_index, edge_attr=edge_attr, unrolling_steps=self.unrolling_steps, ) loss = self.loss(y_pred, y) boundary_loss = self.loss( y_pred[batch.boundary_mask], y[batch.boundary_mask] ) self._log_loss(loss, batch, "train") self._log_loss(boundary_loss, batch, "train_boundary") return loss def validation_step(self, batch: Batch, _): x, y, c, edge_index, edge_attr = self._preprocess_batch(batch) y_pred = self( x, c, batch.boundary_values, batch.boundary_mask, edge_index=edge_index, edge_attr=edge_attr, unrolling_steps=self.unrolling_steps, ) loss = self.loss(y_pred, y) boundary_loss = self.loss( y_pred[batch.boundary_mask], y[batch.boundary_mask] ) self._log_loss(loss, batch, "val") self._log_loss(boundary_loss, batch, "val_boundary") return loss def test_step(self, batch: Batch, _): x, y, c, edge_index, edge_attr = self._preprocess_batch(batch) y_pred = self.model( x, c, batch.boundary_values, batch.boundary_mask, edge_index=edge_index, edge_attr=edge_attr, unrolling_steps=self.unrolling_steps, batch=batch.batch, pos=batch.pos, plot_results=True, ) loss = self._compute_loss(y_pred, y) self._log_loss(loss, batch, "test") return loss def configure_optimizers(self): optimizer = torch.optim.Adam(self.parameters(), lr=1e-3) return optimizer def _impose_bc(self, x: torch.Tensor, data: Batch): x[data.boundary_mask] = data.boundary_values return x