# lightning.pytorch==2.5.5 seed_everything: 1999 trainer: accelerator: gpu strategy: auto devices: 1 num_nodes: 1 precision: null logger: - class_path: lightning.pytorch.loggers.TensorBoardLogger init_args: save_dir: logs name: "test" version: null callbacks: - class_path: lightning.pytorch.callbacks.ModelCheckpoint init_args: monitor: val/loss mode: min save_top_k: 1 filename: best-checkpoint - class_path: lightning.pytorch.callbacks.EarlyStopping init_args: monitor: val/loss mode: min patience: 25 verbose: false max_epochs: 1000 min_epochs: null max_steps: -1 min_steps: null overfit_batches: 0.0 log_every_n_steps: null # inference_mode: true default_root_dir: null # accumulate_grad_batches: 2 # gradient_clip_val: 1.0 model: class_path: ThermalSolver.graph_module.GraphSolver init_args: model_class_path: ThermalSolver.model.learnable_finite_difference.CorrectionNet curriculum_learning: true start_iters: 5 increase_every: 10 increase_rate: 2 max_iters: 2000 accumulation_iters: 320 data: class_path: ThermalSolver.graph_datamodule.GraphDataModule init_args: hf_repo: "SISSAmathLab/thermal-conduction" split_name: "1000_40x30" batch_size: 32 train_size: 0.8 test_size: 0.1 test_size: 0.1 build_radial_graph: false radius: 0.6 remove_boundary_edges: false optimizer: null lr_scheduler: null # ckpt_path: logs/test/version_0/checkpoints/best-checkpoint.ckpt