import torch from lightning import LightningModule from torch_geometric.data import Batch class GraphSolver(LightningModule): def __init__( self, model: torch.nn.Module, loss: torch.nn.Module = None, unrolling_steps: int = 10, ): super().__init__() self.model = model self.loss = loss if loss is not None else torch.nn.MSELoss() self.unrolling_steps = unrolling_steps def forward( self, x: torch.Tensor, c: torch.Tensor, edge_index: torch.Tensor, edge_attr: torch.Tensor, ): return self.model(x, c, edge_index, edge_attr) def _compute_loss_train(self, x, x_prev, y): return self.loss(x, y) + self.loss(x, x_prev) def _compute_loss(self, x, y): return self.loss(x, y) def _preprocess_batch(self, batch: Batch): return batch.x, batch.y, batch.c, batch.edge_index, batch.edge_attr def _log_loss(self, loss, batch, stage: str): self.log( f"{stage}_loss", loss, on_step=False, on_epoch=True, prog_bar=True, batch_size=int(batch.num_graphs), ) return loss def training_step(self, batch: Batch, _): x, y, c, edge_index, edge_attr = self._preprocess_batch(batch) loss = 0.0 for _ in range(self.unrolling_steps): x_prev = x.detach() x = self(x_prev, c, edge_index=edge_index, edge_attr=edge_attr) loss += self.loss(x, y) self._log_loss(loss, batch, "train") return loss def validation_step(self, batch: Batch, _): x, y, c, edge_index, edge_attr = self._preprocess_batch(batch) for _ in range(self.unrolling_steps): x_prev = x.detach() x = self(x_prev, c, edge_index=edge_index, edge_attr=edge_attr) loss = self.loss(x, x_prev) if loss < 1e-5: break loss = self._compute_loss(x, y) self._log_loss(loss, batch, "val") return loss def test_step(self, batch: Batch, _): x, y, c, edge_index, edge_attr = self._preprocess_batch(batch) for _ in range(self.unrolling_steps): x_prev = x.detach() x = self(x_prev, c, edge_index=edge_index, edge_attr=edge_attr) loss = self._compute_loss(x, y) self._log_loss(loss, batch, "test") return loss def configure_optimizers(self): optimizer = torch.optim.Adam(self.parameters(), lr=1e-3) return optimizer