Files
thermal-conduction-ml/ThermalSolver/model/local_gno.py
2025-10-06 13:23:32 +02:00

250 lines
7.2 KiB
Python

import torch
from torch import nn
from torch_geometric.nn import MessagePassing
from matplotlib.tri import Triangulation
def plot_results_fn(x, pos, i, batch):
x = x[batch == 0]
pos = pos[batch == 0]
tria = Triangulation(pos[:, 0].cpu(), pos[:, 1].cpu())
import matplotlib.pyplot as plt
plt.tricontourf(tria, x[:, 0].cpu(), levels=14)
plt.colorbar()
plt.savefig(f"out_{i:03d}.png")
plt.axis("equal")
plt.close()
class EncX(nn.Module):
def __init__(self, x_ch, hidden):
super().__init__()
self.net = nn.Sequential(
nn.Linear(x_ch, hidden // 2),
nn.GELU(),
nn.Linear(hidden // 2, hidden),
nn.GELU(),
)
def forward(self, x):
return self.net(x)
class EncC(nn.Module):
def __init__(self, c_ch, hidden):
super().__init__()
self.net = nn.Sequential(
nn.Linear(c_ch, hidden // 2),
nn.GELU(),
nn.Linear(hidden // 2, hidden),
nn.GELU(),
)
def forward(self, c):
return self.net(c)
class DecX(nn.Module):
def __init__(self, hidden, out_ch):
super().__init__()
self.net = nn.Sequential(
nn.Linear(hidden, hidden // 2),
nn.GELU(),
nn.Linear(hidden // 2, out_ch),
nn.GELU(),
)
def forward(self, x):
return self.net(x)
# class ConditionalGNOBlock(MessagePassing):
# def __init__(self, hidden_ch, edge_ch=0, aggr="mean"):
# super().__init__(aggr=aggr, node_dim=0)
# self.edge_attr_net = nn.Sequential(
# nn.Linear(edge_ch, hidden_ch // 2),
# nn.SiLU(),
# nn.Linear(hidden_ch // 2, 1),
# nn.Softplus()
# )
# self.diff_net = nn.Sequential(
# nn.Linear(hidden_ch, hidden_ch),
# nn.SiLU(),
# nn.Linear(hidden_ch, hidden_ch),
# )
# # self.x_net = nn.Sequential(
# # nn.Linear(hidden_ch, hidden_ch),
# # nn.SiLU(),
# # nn.Linear(hidden_ch, hidden_ch),
# # )
# self.c_ij_net = nn.Sequential(
# nn.Linear(hidden_ch, hidden_ch // 2),
# nn.SiLU(),
# nn.Linear(hidden_ch // 2, 1),
# nn.Sigmoid(),
# )
# # self.gamma_net = nn.Sequential(
# # nn.Linear(2 * hidden_ch, hidden_ch),
# # nn.SiLU(),
# # nn.Linear(hidden_ch, hidden_ch // 2),
# # nn.SiLU(),
# # nn.Linear(hidden_ch // 2, 1),
# # nn.Sigmoid(),
# # )
# self.alpha_net = nn.Sequential(
# nn.Linear(2 * hidden_ch, hidden_ch),
# nn.SiLU(),
# nn.Linear(hidden_ch, hidden_ch // 2),
# nn.SiLU(),
# nn.Linear(hidden_ch // 2, 1),
# nn.Sigmoid(),
# )
# def forward(self, x, c, edge_index, edge_attr=None):
# return self.propagate(edge_index, x=x, c=c, edge_attr=edge_attr)
# def message(self, x_i, x_j, c_i, c_j, edge_attr):
# c_ij = 0.5 * (c_i + c_j)
# # gamma = self.gamma_net(torch.cat([x_i, x_j], dim=-1))
# # gate = torch.sself.edge_attr_net(edge_attr))
# gate = self.edge_attr_net(edge_attr)
# # m = (
# # gamma * self.diff_net(x_j - x_i) + (1 - gamma) * self.x_net(x_j)
# # ) * gate
# m = self.diff_net(x_j - x_i) * gate
# m = m * self.c_ij_net(c_ij)
# return m
# def update(self, aggr_out, x):
# alpha = self.alpha_net(torch.cat([x, aggr_out], dim=-1))
# return x + alpha * aggr_out
class ConditionalGNOBlock(MessagePassing):
def __init__(self, hidden_ch, edge_ch=0, aggr="mean"):
super().__init__(aggr=aggr, node_dim=0)
self.edge_ch = edge_ch
# Rete che mappa edge_attr -> coefficiente scalare (log-scale)
# Se edge_ch==0 useremo un coefficiente apprendibile globale
self.edge_attr_net = nn.Sequential(
nn.Linear(edge_ch, hidden_ch),
nn.GELU(),
nn.Linear(hidden_ch, hidden_ch // 2),
nn.GELU(),
nn.Linear(hidden_ch // 2, 1),
nn.Softplus(),
)
# gating dalla condizione c_ij (restituisce scalar in (0,1))
self.c_ij_net = nn.Sequential(
nn.Linear(hidden_ch, hidden_ch),
nn.GELU(),
nn.Linear(hidden_ch, hidden_ch // 2),
nn.GELU(),
nn.Linear(hidden_ch // 2, 1),
nn.Sigmoid(),
)
# alpha per passo (clampato tramite sigmoid)
self.alpha_net = nn.Sequential(
nn.Linear(2 * hidden_ch, hidden_ch),
nn.GELU(),
nn.Linear(hidden_ch, hidden_ch // 2),
nn.GELU(),
nn.Linear(hidden_ch // 2, 1),
nn.Sigmoid(),
)
self.diff_net = nn.Sequential(
nn.Linear(hidden_ch, hidden_ch * 2),
nn.GELU(),
nn.Linear(hidden_ch * 2, hidden_ch**2),
nn.GELU(),
nn.Linear(hidden_ch**2, hidden_ch),
nn.GELU(),
)
# self.norm = nn.LayerNorm(hidden_ch)
def forward(self, x, c, edge_index, edge_attr=None):
# chiamiamo propagate; edge_attr può essere None
return self.propagate(edge_index, x=x, c=c, edge_attr=edge_attr)
def message(self, x_i, x_j, c_i, c_j, edge_attr):
"""
Implementazione diffusiva:
m_ij = w_ij * (x_j - x_i) * c_gate_ij
dove w_ij = softplus(edge_attr_net(edge_attr)) >= 0
"""
c_ij = 0.5 * (c_i + c_j) # [E, H]
c_gate = self.c_ij_net(c_ij) # [E, 1] in (0,1)
w_raw = self.edge_attr_net(edge_attr) # [E,1]
w = w_raw + 1e-8
diff = x_j - x_i # [E, H]
m = w * self.diff_net(diff) + diff # [E,H]
m = m * c_gate # [E,H]
return m
def update(self, aggr_out, x):
"""
TODO: doc
"""
alpha = self.alpha_net(torch.cat([x, aggr_out], dim=-1))
x_new = x + alpha * aggr_out
return x_new
class GatingGNO(nn.Module):
"""
TODO: add doc
"""
def __init__(
self, x_ch_node, f_ch_node, hidden, layers, edge_ch=0, out_ch=1
):
super().__init__()
self.encoder_x = EncX(x_ch_node, hidden)
self.encoder_c = EncC(f_ch_node, hidden)
self.blocks = nn.ModuleList(
[
ConditionalGNOBlock(hidden_ch=hidden, edge_ch=edge_ch)
for _ in range(layers)
]
)
self.dec = DecX(hidden, out_ch)
def forward(
self,
x,
c,
boundary,
boundary_mask,
edge_index,
edge_attr=None,
unrolling_steps=1,
plot_results=False,
batch=None,
pos=None,
):
x = self.encoder_x(x)
c = self.encoder_c(c)
if plot_results:
x_ = self.dec(x)
plot_results_fn(x_, pos, 0, batch=batch)
for _ in range(1, unrolling_steps + 1):
for i, blk in enumerate(self.blocks):
x = blk(x, c, edge_index, edge_attr=edge_attr)
if plot_results:
x_ = self.dec(x)
plot_results_fn(x_, pos, i * _, batch=batch)
return self.dec(x)