Files
thermal-conduction-ml/ThermalSolver/autoregressive_module.py
Filippo Olivo 88bc5c05e4 transfer files
2025-11-25 19:19:31 +01:00

299 lines
10 KiB
Python

import torch
from lightning import LightningModule
from torch_geometric.data import Batch
import importlib
from matplotlib import pyplot as plt
from matplotlib.tri import Triangulation
from .model.finite_difference import FiniteDifferenceStep
import os
def import_class(class_path: str):
module_path, class_name = class_path.rsplit(".", 1) # split last dot
module = importlib.import_module(module_path) # import the module
cls = getattr(module, class_name) # get the class
return cls
def _plot_mesh(pos, y, y_pred, y_true ,batch, i, batch_idx):
idx = batch == 0
y = y[idx].detach().cpu()
y_pred = y_pred[idx].detach().cpu()
pos = pos[idx].detach().cpu()
y_true = y_true[idx].detach().cpu()
# print(torch.max(y_true), torch.min(y_true))
folder = f"{batch_idx:02d}_images"
if os.path.exists(folder) is False:
os.makedirs(folder)
pos = pos.detach().cpu()
tria = Triangulation(pos[:, 0], pos[:, 1])
plt.figure(figsize=(18, 5))
plt.subplot(1, 3, 1)
plt.tricontourf(tria, y.squeeze().numpy(), levels=14)
plt.colorbar()
plt.title("Step t-1")
plt.subplot(1, 3, 2)
plt.tricontourf(tria, y_pred.squeeze().numpy(), levels=14)
plt.colorbar()
plt.title("Step t Predicted")
plt.subplot(1, 3, 3)
plt.tricontourf(tria, y_true.squeeze().numpy(), levels=14)
plt.colorbar()
plt.title("t True")
plt.suptitle("GNO", fontsize=16)
name = f"{folder}/graph_iter_{i:04d}.png"
plt.savefig(name, dpi=72)
plt.close()
def _plot_losses(losses, batch_idx):
folder = f"{batch_idx:02d}_images"
plt.figure()
plt.plot(losses)
plt.yscale("log")
plt.xlabel("Iteration")
plt.ylabel("Loss")
plt.title("Test Loss over Iterations")
plt.grid(True)
file_name = f"{folder}/test_loss.png"
plt.savefig(file_name, dpi=300)
plt.close()
class GraphSolver(LightningModule):
def __init__(
self,
model_class_path: str,
model_init_args: dict = {},
loss: torch.nn.Module = None,
start_unrolling_steps: int = 1,
increase_every: int = 20,
increase_rate: float = 2,
max_unrolling_steps: int = 100,
max_inference_iters: int = 1000,
inner_steps: int = 16,
):
super().__init__()
self.model = import_class(model_class_path)(**model_init_args)
# for param in self.model.parameters():
# print(f"Param: {param.shape}, Grad: {param.grad}")
# print(f"Param: {param[0]}")
self.fd_net = FiniteDifferenceStep()
self.loss = loss if loss is not None else torch.nn.MSELoss()
self.start_unrolling = start_unrolling_steps
self.current_unrolling_steps = self.start_unrolling
self.increase_every = increase_every
self.increase_rate = increase_rate
self.max_unrolling_steps = max_unrolling_steps
self.max_inference_iters = max_inference_iters
self.threshold = 1e-4
self.inner_steps = inner_steps
def _compute_deg(self, edge_index, edge_attr, num_nodes):
deg = torch.zeros(num_nodes, device=edge_index.device)
deg = deg.scatter_add(0, edge_index[1], edge_attr)
return deg + 1e-7
def _compute_loss(self, x, y):
return self.loss(x, y)
def _log_loss(self, loss, batch, stage: str):
self.log(
f"{stage}/loss",
loss,
on_step=True,
on_epoch=True,
prog_bar=True,
batch_size=int(batch.num_graphs),
)
return loss
@staticmethod
def _compute_c_ij(c, edge_index):
"""
TODO: add docstring.
"""
return (0.5 * (c[edge_index[0]] + c[edge_index[1]])).squeeze()
def _compute_model_steps(
self, x, edge_index, edge_attr, boundary_mask, boundary_values
):
out = x + self.model(x, edge_index, edge_attr)
# out[boundary_mask] = boundary_values.unsqueeze(-1)
plt.figure()
return out
def _check_convergence(self, out, x):
residual_norm = torch.norm(out - x)
if residual_norm < self.threshold * torch.norm(x):
return True
return False
def _preprocess_batch(self, batch: Batch):
x, y, c, edge_index, edge_attr = (
batch.x,
batch.y,
batch.c,
batch.edge_index,
batch.edge_attr,
)
# edge_attr = 1 / edge_attr
c_ij = self._compute_c_ij(c, edge_index)
edge_attr = edge_attr * (c_ij) # / 100)
return x, y, edge_index, edge_attr
def training_step(self, batch: Batch):
x, y, edge_index, edge_attr = self._preprocess_batch(batch)
# deg = self._compute_deg(edge_index, edge_attr, x.size(0))
losses = []
# print(x.shape, y.shape)
# # print(torch.max(edge_index), torch.min(edge_index))
# plt.figure()
# plt.subplot(2,3,1)
# plt.scatter(batch.pos[:,0].cpu(), batch.pos[:,1].cpu(), c=x.squeeze().cpu())
# plt.subplot(2,3,2)
# plt.scatter(batch.pos[:,0].cpu(), batch.pos[:,1].cpu(), c=y[:,0,:].squeeze().cpu())
# plt.subplot(2,3,3)
# plt.scatter(batch.pos[:,0].cpu(), batch.pos[:,1].cpu(), c=y[:,1,:].squeeze().cpu())
# plt.subplot(2,3,4)
# plt.scatter(batch.pos[:,0].cpu(), batch.pos[:,1].cpu(), c=y[:,2,:].squeeze().cpu())
# plt.subplot(2,3,5)
# plt.scatter(batch.pos[:,0].cpu(), batch.pos[:,1].cpu(), c=y[:,3,:].squeeze().cpu())
# plt.subplot(2,3,6)
# plt.scatter(batch.pos[:,0].cpu(), batch.pos[:,1].cpu(), c=y[:,4,:].squeeze().cpu())
# plt.suptitle("Training Batch Visualization", fontsize=16)
# plt.savefig("training_batch_visualization.png", dpi=300)
# plt.close()
# y = z
pos = batch.pos
boundary_mask = batch.boundary_mask
boundary_values = batch.boundary_values
# plt.scatter(pos[boundary_mask,0].cpu(), pos[boundary_mask,1].cpu(), c=boundary_values.cpu(), s=1)
# plt.savefig("boundary_nodes.png", dpi=300)
# y = z
print(y.shape)
for i in range(self.current_unrolling_steps * self.inner_steps):
out = self._compute_model_steps(
# torch.cat([x,pos], dim=-1),
x,
edge_index,
edge_attr,
# deg,
batch.boundary_mask,
batch.boundary_values,
)
x = out
# print(out.shape, y[:, i, :].shape)
losses.append(self.loss(out.flatten(), y[:, i, :].flatten()))
print(losses)
loss = torch.stack(losses).mean()
# for param in self.model.parameters():
# print(f"Param: {param.shape}, Grad: {param.grad}")
# print(f"Param: {param[0]}")
self._log_loss(loss, batch, "train")
return loss
# def on_train_epoch_start(self):
# print(f"Current unrolling steps: {self.current_unrolling_steps}, dataset unrolling steps: {self.trainer.datamodule.train_dataset.unrolling_steps}")
# return super().on_train_epoch_start()
def on_train_epoch_end(self):
if (
(self.current_epoch + 1) % self.increase_every == 0
and self.current_epoch > 0
):
dm = self.trainer.datamodule
self.current_unrolling_steps = min(
int(self.current_unrolling_steps * self.increase_rate),
self.max_unrolling_steps
)
dm.unrolling_steps = self.current_unrolling_steps
return super().on_train_epoch_end()
def validation_step(self, batch: Batch, _):
# x, y, edge_index, edge_attr = self._preprocess_batch(batch)
# deg = self._compute_deg(edge_index, edge_attr, x.size(0))
# for i in range(self.max_inference_iters * self.inner_steps):
# out = self._compute_model_steps(
# x,
# edge_index,
# edge_attr,
# deg,
# batch.boundary_mask,
# batch.boundary_values,
# )
# converged = self._check_convergence(out, x)
# x = out
# if converged:
# break
# print(y.shape, out.shape)
# loss = self.loss(out, y[:,-1,:])
# self._log_loss(loss, batch, "val")
# self.log("val/iterations", i + 1, on_step=False, on_epoch=True, prog_bar=True, batch_size=int(batch.num_graphs),)
# return loss
x, y, edge_index, edge_attr = self._preprocess_batch(batch)
# deg = self._compute_deg(edge_index, edge_attr, x.size(0))
losses = []
pos = batch.pos
for i in range(self.current_unrolling_steps * self.inner_steps):
out = self._compute_model_steps(
# torch.cat([x,pos], dim=-1),
x,
edge_index,
edge_attr,
# deg,
batch.boundary_mask,
batch.boundary_values,
)
_plot_mesh(batch.pos, x, out, y[:, i, :], batch.batch, i, self.current_epoch)
x = out
losses.append(self.loss(out, y[:, i, :]))
loss = torch.stack(losses).mean()
self._log_loss(loss, batch, "val")
return loss
def test_step(self, batch: Batch, batch_idx):
x, y, edge_index, edge_attr = self._preprocess_batch(batch)
deg = self._compute_deg(edge_index, edge_attr, x.size(0))
losses = []
for i in range(self.max_iters):
out = self._compute_model_steps(
x,
edge_index,
edge_attr.unsqueeze(-1),
deg,
batch.boundary_mask,
batch.boundary_values,
)
converged = self._check_convergence(out, x)
# _plot_mesh(batch.pos, y, out, batch.batch, i, batch_idx)
losses.append(self.loss(out, y).item())
if converged:
break
x = out
loss = self.loss(out, y)
# _plot_losses(losses, batch_idx)
self._log_loss(loss, batch, "test")
self.log(
"test/iterations",
i + 1,
on_step=False,
on_epoch=True,
prog_bar=True,
batch_size=int(batch.num_graphs),
)
def configure_optimizers(self):
optimizer = torch.optim.AdamW(self.parameters(), lr=1e-2)
return optimizer
def _impose_bc(self, x: torch.Tensor, data: Batch):
x[data.boundary_mask] = data.boundary_values
return x