Files
thermal-conduction-ml/ThermalSolver/model/learnable_finite_difference.py
Filippo Olivo 88bc5c05e4 transfer files
2025-11-25 19:19:31 +01:00

69 lines
2.2 KiB
Python

import torch
import torch.nn as nn
from torch_geometric.nn import MessagePassing
from torch.nn.utils import spectral_norm
from torch_geometric.nn.conv import GCNConv
class GCNConvLayer(MessagePassing):
def __init__(self, in_channels, out_channels):
super().__init__(aggr="add")
self.lin_l = nn.Linear(in_channels, out_channels, bias=True)
# self.lin_r = spectral_norm(nn.Linear(in_channels, out_channels, bias=False))
def forward(self, x, edge_index, edge_attr, deg):
out = self.propagate(edge_index, x=x, edge_attr=edge_attr, deg=deg)
out = self.lin_l(out)
return out
def message(self, x_j, edge_attr):
return x_j * edge_attr.view(-1, 1)
def aggregate(self, inputs, index, deg):
"""
TODO: add docstring.
"""
out = super().aggregate(inputs, index)
deg = deg + 1e-7
return out / deg.view(-1, 1)
class CorrectionNet(nn.Module):
def __init__(self, input_dim=1, output_dim=1, hidden_dim=8, n_layers=8):
super().__init__()
self.enc = nn.Linear(input_dim, hidden_dim, bias=False)
# self.layers = n_layers
# self.l = GCNConv(hidden_dim, hidden_dim, aggr="mean")
self.layers = torch.nn.ModuleList(
[GCNConv(hidden_dim, hidden_dim, aggr="mean", bias=False) for _ in range(n_layers)]
)
self.dec = nn.Linear(hidden_dim, output_dim)
def forward(self, x, edge_index, edge_attr,):
h = self.enc(x)
# h = self.relu(h)
for l in self.layers:
# print(f"Forward pass layer {_}")
h = l(h, edge_index, edge_attr)
# h = self.relu(h)
out = self.dec(h)
return out
class MLPNet(nn.Module):
def __init__(self, input_dim=1, output_dim=1, hidden_dim=8, n_layers=1):
super().__init__()
layers = []
func = torch.nn.ReLU
self.network = nn.Sequential(
nn.Linear(input_dim, hidden_dim),
func(),
nn.Linear(hidden_dim, hidden_dim),
func(),
nn.Linear(hidden_dim, hidden_dim),
func(),
nn.Linear(hidden_dim, output_dim),
)
def forward(self, x, edge_index=None, edge_attr=None):
return self.network(x)