fix readme examples (#599)

This commit is contained in:
Dario Coscia
2025-07-08 09:22:39 +02:00
committed by GitHub
parent 2cb0eadac1
commit 008888fb1e

View File

@@ -90,20 +90,21 @@ Do you want to learn more about it? Look at our [Tutorials](https://github.com/m
### Solve Data Driven Problems
Data driven modelling aims to learn a function that given some input data gives an output (e.g. regression, classification, ...). In PINA you can easily do this by:
```python
import torch
from pina import Trainer
from pina.model import FeedForward
from pina.solver import SupervisedSolver
from pina.problem.zoo import SupervisedProblem
input_tensor = torch.rand((10, 1))
output_tensor = input_tensor.pow(3)
target_tensor = input_tensor.pow(3)
# Step 1. Define problem
problem = SupervisedProblem(input_tensor, target_tensor)
# Step 2. Design model (you can use your favourite torch.nn.Module in here)
model = FeedForward(input_dimensions=1, output_dimensions=1, layers=[64, 64])
# Step 3. Define Solver
solver = SupervisedSolver(problem, model)
solver = SupervisedSolver(problem, model, use_lt=False)
# Step 4. Train
trainer = Trainer(solver, max_epochs=1000, accelerator='gpu')
trainer.train()
@@ -149,6 +150,7 @@ class SimpleODE(SpatialProblem):
# Step 1. Define problem
problem = SimpleODE()
problem.discretise_domain(n=100, mode="grid", domains=["D", "x0"])
# Step 2. Design model (you can use your favourite torch.nn.Module in here)
model = FeedForward(input_dimensions=1, output_dimensions=1, layers=[64, 64])
# Step 3. Define Solver