fix readme examples (#599)
This commit is contained in:
@@ -90,20 +90,21 @@ Do you want to learn more about it? Look at our [Tutorials](https://github.com/m
|
|||||||
### Solve Data Driven Problems
|
### Solve Data Driven Problems
|
||||||
Data driven modelling aims to learn a function that given some input data gives an output (e.g. regression, classification, ...). In PINA you can easily do this by:
|
Data driven modelling aims to learn a function that given some input data gives an output (e.g. regression, classification, ...). In PINA you can easily do this by:
|
||||||
```python
|
```python
|
||||||
|
import torch
|
||||||
from pina import Trainer
|
from pina import Trainer
|
||||||
from pina.model import FeedForward
|
from pina.model import FeedForward
|
||||||
from pina.solver import SupervisedSolver
|
from pina.solver import SupervisedSolver
|
||||||
from pina.problem.zoo import SupervisedProblem
|
from pina.problem.zoo import SupervisedProblem
|
||||||
|
|
||||||
input_tensor = torch.rand((10, 1))
|
input_tensor = torch.rand((10, 1))
|
||||||
output_tensor = input_tensor.pow(3)
|
target_tensor = input_tensor.pow(3)
|
||||||
|
|
||||||
# Step 1. Define problem
|
# Step 1. Define problem
|
||||||
problem = SupervisedProblem(input_tensor, target_tensor)
|
problem = SupervisedProblem(input_tensor, target_tensor)
|
||||||
# Step 2. Design model (you can use your favourite torch.nn.Module in here)
|
# Step 2. Design model (you can use your favourite torch.nn.Module in here)
|
||||||
model = FeedForward(input_dimensions=1, output_dimensions=1, layers=[64, 64])
|
model = FeedForward(input_dimensions=1, output_dimensions=1, layers=[64, 64])
|
||||||
# Step 3. Define Solver
|
# Step 3. Define Solver
|
||||||
solver = SupervisedSolver(problem, model)
|
solver = SupervisedSolver(problem, model, use_lt=False)
|
||||||
# Step 4. Train
|
# Step 4. Train
|
||||||
trainer = Trainer(solver, max_epochs=1000, accelerator='gpu')
|
trainer = Trainer(solver, max_epochs=1000, accelerator='gpu')
|
||||||
trainer.train()
|
trainer.train()
|
||||||
@@ -149,6 +150,7 @@ class SimpleODE(SpatialProblem):
|
|||||||
|
|
||||||
# Step 1. Define problem
|
# Step 1. Define problem
|
||||||
problem = SimpleODE()
|
problem = SimpleODE()
|
||||||
|
problem.discretise_domain(n=100, mode="grid", domains=["D", "x0"])
|
||||||
# Step 2. Design model (you can use your favourite torch.nn.Module in here)
|
# Step 2. Design model (you can use your favourite torch.nn.Module in here)
|
||||||
model = FeedForward(input_dimensions=1, output_dimensions=1, layers=[64, 64])
|
model = FeedForward(input_dimensions=1, output_dimensions=1, layers=[64, 64])
|
||||||
# Step 3. Define Solver
|
# Step 3. Define Solver
|
||||||
|
|||||||
Reference in New Issue
Block a user