fix readme examples (#599)
This commit is contained in:
@@ -90,20 +90,21 @@ Do you want to learn more about it? Look at our [Tutorials](https://github.com/m
|
||||
### Solve Data Driven Problems
|
||||
Data driven modelling aims to learn a function that given some input data gives an output (e.g. regression, classification, ...). In PINA you can easily do this by:
|
||||
```python
|
||||
import torch
|
||||
from pina import Trainer
|
||||
from pina.model import FeedForward
|
||||
from pina.solver import SupervisedSolver
|
||||
from pina.problem.zoo import SupervisedProblem
|
||||
|
||||
input_tensor = torch.rand((10, 1))
|
||||
output_tensor = input_tensor.pow(3)
|
||||
target_tensor = input_tensor.pow(3)
|
||||
|
||||
# Step 1. Define problem
|
||||
problem = SupervisedProblem(input_tensor, target_tensor)
|
||||
# Step 2. Design model (you can use your favourite torch.nn.Module in here)
|
||||
model = FeedForward(input_dimensions=1, output_dimensions=1, layers=[64, 64])
|
||||
# Step 3. Define Solver
|
||||
solver = SupervisedSolver(problem, model)
|
||||
solver = SupervisedSolver(problem, model, use_lt=False)
|
||||
# Step 4. Train
|
||||
trainer = Trainer(solver, max_epochs=1000, accelerator='gpu')
|
||||
trainer.train()
|
||||
@@ -149,6 +150,7 @@ class SimpleODE(SpatialProblem):
|
||||
|
||||
# Step 1. Define problem
|
||||
problem = SimpleODE()
|
||||
problem.discretise_domain(n=100, mode="grid", domains=["D", "x0"])
|
||||
# Step 2. Design model (you can use your favourite torch.nn.Module in here)
|
||||
model = FeedForward(input_dimensions=1, output_dimensions=1, layers=[64, 64])
|
||||
# Step 3. Define Solver
|
||||
|
||||
Reference in New Issue
Block a user