Neural Tangent Kernel integration + typo fix (#505)
* NTK weighting + typo fixing * black code formatter + .rst docs --------- Co-authored-by: Dario Coscia <dariocos99@gmail.com>
This commit is contained in:
committed by
FilippoOlivo
parent
ff191c9611
commit
01aeb17673
9
docs/source/_rst/loss/ntk_weighting.rst
Normal file
9
docs/source/_rst/loss/ntk_weighting.rst
Normal file
@@ -0,0 +1,9 @@
|
||||
NeuralTangentKernelWeighting
|
||||
=============================
|
||||
.. currentmodule:: pina.loss.ntk_weighting
|
||||
|
||||
.. automodule:: pina.loss.ntk_weighting
|
||||
|
||||
.. autoclass:: NeuralTangentKernelWeighting
|
||||
:members:
|
||||
:show-inheritance:
|
||||
@@ -6,6 +6,7 @@ __all__ = [
|
||||
"PowerLoss",
|
||||
"WeightingInterface",
|
||||
"ScalarWeighting",
|
||||
"NeuralTangentKernelWeighting",
|
||||
]
|
||||
|
||||
from .loss_interface import LossInterface
|
||||
@@ -13,3 +14,4 @@ from .power_loss import PowerLoss
|
||||
from .lp_loss import LpLoss
|
||||
from .weighting_interface import WeightingInterface
|
||||
from .scalar_weighting import ScalarWeighting
|
||||
from .ntk_weighting import NeuralTangentKernelWeighting
|
||||
|
||||
71
pina/loss/ntk_weighting.py
Normal file
71
pina/loss/ntk_weighting.py
Normal file
@@ -0,0 +1,71 @@
|
||||
"""Module for Neural Tangent Kernel Class"""
|
||||
|
||||
import torch
|
||||
from torch.nn import Module
|
||||
from .weighting_interface import WeightingInterface
|
||||
from ..utils import check_consistency
|
||||
|
||||
|
||||
class NeuralTangentKernelWeighting(WeightingInterface):
|
||||
"""
|
||||
A neural tangent kernel scheme for weighting different losses to
|
||||
boost the convergence.
|
||||
|
||||
.. seealso::
|
||||
|
||||
**Original reference**: Wang, Sifan, Xinling Yu, and
|
||||
Paris Perdikaris. *When and why PINNs fail to train:
|
||||
A neural tangent kernel perspective*. Journal of
|
||||
Computational Physics 449 (2022): 110768.
|
||||
DOI: `10.1016/j.jcp.2021.110768 <https://doi.org/10.1016/j.jcp.2021.110768>`_.
|
||||
|
||||
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, model, alpha=0.5):
|
||||
"""
|
||||
Initialization of the :class:`NeuralTangentKernelWeighting` class.
|
||||
|
||||
:param torch.nn.Module model: The neural network model.
|
||||
:param float alpha: The alpha parameter.
|
||||
"""
|
||||
|
||||
super().__init__()
|
||||
check_consistency(alpha, float)
|
||||
check_consistency(model, Module)
|
||||
if alpha < 0 or alpha > 1:
|
||||
raise ValueError("alpha should be a value between 0 and 1")
|
||||
self.alpha = alpha
|
||||
self.model = model
|
||||
self.weights = {}
|
||||
self.default_value_weights = 1
|
||||
|
||||
def aggregate(self, losses):
|
||||
"""
|
||||
Weights the losses according to the Neural Tangent Kernel
|
||||
algorithm.
|
||||
|
||||
:param dict(torch.Tensor) input: The dictionary of losses.
|
||||
:return: The losses aggregation. It should be a scalar Tensor.
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
losses_norm = {}
|
||||
for condition in losses:
|
||||
losses[condition].backward(retain_graph=True)
|
||||
grads = []
|
||||
for param in self.model.parameters():
|
||||
grads.append(param.grad.view(-1))
|
||||
grads = torch.cat(grads)
|
||||
losses_norm[condition] = torch.norm(grads)
|
||||
self.weights = {
|
||||
condition: self.alpha
|
||||
* self.weights.get(condition, self.default_value_weights)
|
||||
+ (1 - self.alpha)
|
||||
* losses_norm[condition]
|
||||
/ sum(losses_norm.values())
|
||||
for condition in losses
|
||||
}
|
||||
return sum(
|
||||
self.weights[condition] * loss for condition, loss in losses.items()
|
||||
)
|
||||
65
tests/test_weighting/test_ntk_weighting.py
Normal file
65
tests/test_weighting/test_ntk_weighting.py
Normal file
@@ -0,0 +1,65 @@
|
||||
import pytest
|
||||
from pina import Trainer
|
||||
from pina.solver import PINN
|
||||
from pina.model import FeedForward
|
||||
from pina.problem.zoo import Poisson2DSquareProblem
|
||||
from pina.loss import NeuralTangentKernelWeighting
|
||||
|
||||
problem = Poisson2DSquareProblem()
|
||||
condition_names = problem.conditions.keys()
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"model,alpha",
|
||||
[
|
||||
(
|
||||
FeedForward(
|
||||
len(problem.input_variables), len(problem.output_variables)
|
||||
),
|
||||
0.5,
|
||||
)
|
||||
],
|
||||
)
|
||||
def test_constructor(model, alpha):
|
||||
NeuralTangentKernelWeighting(model=model, alpha=alpha)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("model", [0.5])
|
||||
def test_wrong_constructor1(model):
|
||||
with pytest.raises(ValueError):
|
||||
NeuralTangentKernelWeighting(model)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"model,alpha",
|
||||
[
|
||||
(
|
||||
FeedForward(
|
||||
len(problem.input_variables), len(problem.output_variables)
|
||||
),
|
||||
1.2,
|
||||
)
|
||||
],
|
||||
)
|
||||
def test_wrong_constructor2(model, alpha):
|
||||
with pytest.raises(ValueError):
|
||||
NeuralTangentKernelWeighting(model, alpha)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"model,alpha",
|
||||
[
|
||||
(
|
||||
FeedForward(
|
||||
len(problem.input_variables), len(problem.output_variables)
|
||||
),
|
||||
0.5,
|
||||
)
|
||||
],
|
||||
)
|
||||
def test_train_aggregation(model, alpha):
|
||||
weighting = NeuralTangentKernelWeighting(model=model, alpha=alpha)
|
||||
problem.discretise_domain(50)
|
||||
solver = PINN(problem=problem, model=model, weighting=weighting)
|
||||
trainer = Trainer(solver=solver, max_epochs=5, accelerator="cpu")
|
||||
trainer.train()
|
||||
Reference in New Issue
Block a user