ellipsoid
This commit is contained in:
committed by
Nicola Demo
parent
6b763ae9ab
commit
025a7ed0df
@@ -6,11 +6,20 @@ Code Documentation
|
||||
|
||||
PINN <pinn.rst>
|
||||
LabelTensor <label_tensor.rst>
|
||||
Span <span.rst>
|
||||
Operators <operators.rst>
|
||||
Plotter <plotter.rst>
|
||||
Condition <condition.rst>
|
||||
Location <location.rst>
|
||||
Operators <operators.rst>
|
||||
Plotter <plotter.rst>
|
||||
|
||||
Geometries
|
||||
----------
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 3
|
||||
|
||||
Span <span.rst>
|
||||
Ellipsoid <ellipsoid.rst>
|
||||
|
||||
|
||||
Model
|
||||
-----
|
||||
|
||||
10
docs/source/_rst/ellipsoid.rst
Normal file
10
docs/source/_rst/ellipsoid.rst
Normal file
@@ -0,0 +1,10 @@
|
||||
Ellipsoid
|
||||
===========
|
||||
.. currentmodule:: pina.ellipsoid
|
||||
|
||||
.. automodule:: pina.ellipsoid
|
||||
|
||||
.. autoclass:: Ellipsoid
|
||||
:members:
|
||||
:show-inheritance:
|
||||
:noindex:
|
||||
231
pina/ellipsoid.py
Normal file
231
pina/ellipsoid.py
Normal file
@@ -0,0 +1,231 @@
|
||||
import torch
|
||||
|
||||
from .location import Location
|
||||
from .label_tensor import LabelTensor
|
||||
|
||||
|
||||
class Ellipsoid(Location):
|
||||
"""PINA implementation of Ellipsoid domain."""
|
||||
|
||||
def __init__(self, ellipsoid_dict, sample_surface=False):
|
||||
"""PINA implementation of Ellipsoid domain.
|
||||
|
||||
:param ellipsoid_dict: A dictionary with dict-key a string representing
|
||||
the input variables for the pinn, and dict-value a list with
|
||||
the domain extrema.
|
||||
:type ellipsoid_dict: dict
|
||||
:param sample_surface: A variable for choosing sample strategies. If
|
||||
`sample_surface=True` only samples on the ellipsoid surface
|
||||
frontier are taken. If `sample_surface=False` only samples on
|
||||
the ellipsoid interior are taken, defaults to False.
|
||||
:type sample_surface: bool, optional
|
||||
|
||||
.. warning::
|
||||
Sampling for dimensions greater or equal to 10 could result
|
||||
in a shrinking of the ellipsoid, which degrades the quality
|
||||
of the samples. For dimensions higher than 10, other algorithms
|
||||
for sampling should be used, such as: Dezert, Jean, and Christian
|
||||
Musso. "An efficient method for generating points uniformly
|
||||
distributed in hyperellipsoids." Proceedings of the Workshop on
|
||||
Estimation, Tracking and Fusion: A Tribute to Yaakov Bar-Shalom.
|
||||
Vol. 7. No. 8. 2001.
|
||||
|
||||
:Example:
|
||||
>>> spatial_domain = Ellipsoid({'x':[1, 0], 'y':[0,1]})
|
||||
|
||||
"""
|
||||
self.fixed_ = {}
|
||||
self.range_ = {}
|
||||
self._centers = None
|
||||
self._axis = None
|
||||
|
||||
if not isinstance(sample_surface, bool):
|
||||
raise ValueError('sample_surface must be bool type.')
|
||||
|
||||
self._sample_surface = sample_surface
|
||||
|
||||
for k, v in ellipsoid_dict.items():
|
||||
if isinstance(v, (int, float)):
|
||||
self.fixed_[k] = v
|
||||
elif isinstance(v, (list, tuple)) and len(v) == 2:
|
||||
self.range_[k] = v
|
||||
else:
|
||||
raise TypeError
|
||||
|
||||
# perform operation only for not fixed variables (if any)
|
||||
|
||||
if self.range_:
|
||||
|
||||
# convert dict vals to torch [dim, 2] matrix
|
||||
list_dict_vals = list(self.range_.values())
|
||||
tmp = torch.tensor(list_dict_vals, dtype=torch.float)
|
||||
|
||||
# get the ellipsoid center
|
||||
normal_basis = torch.eye(len(list_dict_vals))
|
||||
centers = torch.diag(normal_basis * tmp.mean(axis=1))
|
||||
|
||||
# get the ellipsoid axis
|
||||
ellipsoid_axis = (tmp - centers.reshape(-1, 1))[:, -1]
|
||||
|
||||
# save elipsoid axis and centers as dict
|
||||
self._centers = dict(zip(self.range_.keys(), centers.tolist()))
|
||||
self._axis = dict(zip(self.range_.keys(), ellipsoid_axis.tolist()))
|
||||
|
||||
@property
|
||||
def variables(self):
|
||||
"""Spatial variables.
|
||||
|
||||
:return: Spatial variables defined in '__init__()'
|
||||
:rtype: list[str]
|
||||
"""
|
||||
return list(self.fixed_.keys()) + list(self.range_.keys())
|
||||
|
||||
def _sample_range(self, n, mode, variables):
|
||||
"""Rescale the samples to the correct bounds.
|
||||
|
||||
:param n: Number of points to sample in the ellipsoid.
|
||||
:type n: int
|
||||
:param mode: Mode for sampling, defaults to 'random'.
|
||||
Available modes include: random sampling, 'random'.
|
||||
:type mode: str, optional
|
||||
:param variables: Variables to be rescaled in the samples.
|
||||
:type variables: torch.Tensor
|
||||
:return: Rescaled sample points.
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
|
||||
# =============== For Developers ================ #
|
||||
#
|
||||
# The sampling startegy used is fairly simple.
|
||||
# For all `mode`s first we sample from the unit
|
||||
# sphere and then we scale and shift according
|
||||
# to self._axis.values() and self._centers.values().
|
||||
#
|
||||
# =============================================== #
|
||||
|
||||
# get dimension
|
||||
dim = len(variables)
|
||||
|
||||
# get values center
|
||||
pairs_center = [(k, v) for k, v in self._centers.items()
|
||||
if k in variables]
|
||||
_, values_center = map(list, zip(*pairs_center))
|
||||
values_center = torch.tensor(values_center)
|
||||
|
||||
# get values axis
|
||||
pairs_axis = [(k, v) for k, v in self._axis.items() if k in variables]
|
||||
_, values_axis = map(list, zip(*pairs_axis))
|
||||
values_axis = torch.tensor(values_axis)
|
||||
|
||||
# Sample in the unit sphere
|
||||
if mode == 'random':
|
||||
# 1. Sample n points from the surface of a unit sphere
|
||||
# 2. Scale each dimension using torch.rand()
|
||||
# (a random number between 0-1) so that it lies within
|
||||
# the sphere, only if self._sample_surface=False
|
||||
# 3. Multiply with self._axis.values() to make it ellipsoid
|
||||
# 4. Shift the mean of the ellipse by adding self._centers.values()
|
||||
|
||||
# step 1.
|
||||
pts = torch.randn(size=(n, dim))
|
||||
pts = pts / torch.linalg.norm(pts, axis=-1).view((n, 1))
|
||||
if not self._sample_surface: # step 2.
|
||||
scale = torch.rand((n, 1))
|
||||
pts = pts * scale
|
||||
|
||||
# step 3. and 4.
|
||||
pts *= values_axis
|
||||
pts += values_center
|
||||
|
||||
return pts
|
||||
|
||||
def sample(self, n, mode='random', variables='all'):
|
||||
"""Sample routine.
|
||||
|
||||
:param n: Number of points to sample in the ellipsoid.
|
||||
:type n: int
|
||||
:param mode: Mode for sampling, defaults to 'random'.
|
||||
Available modes include: random sampling, 'random'.
|
||||
:type mode: str, optional
|
||||
:param variables: pinn variable to be sampled, defaults to 'all'.
|
||||
:type variables: str or list[str], optional
|
||||
|
||||
:Example:
|
||||
>>> elips = Ellipsoid({'x':[1, 0], 'y':1})
|
||||
>>> elips.sample(n=6)
|
||||
tensor([[0.4872, 1.0000],
|
||||
[0.2977, 1.0000],
|
||||
[0.0422, 1.0000],
|
||||
[0.6431, 1.0000],
|
||||
[0.7272, 1.0000],
|
||||
[0.8326, 1.0000]])
|
||||
"""
|
||||
|
||||
def _Nd_sampler(n, mode, variables):
|
||||
"""Sample all the variables together
|
||||
|
||||
:param n: Number of points to sample.
|
||||
:type n: int
|
||||
:param mode: Mode for sampling, defaults to 'random'.
|
||||
Available modes include: random sampling, 'random';
|
||||
latin hypercube sampling, 'latin' or 'lh';
|
||||
chebyshev sampling, 'chebyshev'; grid sampling 'grid'.
|
||||
:type mode: str, optional.
|
||||
:param variables: pinn variable to be sampled, defaults to 'all'.
|
||||
:type variables: str or list[str], optional.
|
||||
:return: Sample points.
|
||||
:rtype: list[torch.Tensor]
|
||||
"""
|
||||
pairs = [(k, v) for k, v in self.range_.items() if k in variables]
|
||||
keys, _ = map(list, zip(*pairs))
|
||||
|
||||
result = self._sample_range(n, mode, keys)
|
||||
result = result.as_subclass(LabelTensor)
|
||||
result.labels = keys
|
||||
|
||||
for variable in variables:
|
||||
if variable in self.fixed_.keys():
|
||||
value = self.fixed_[variable]
|
||||
pts_variable = torch.tensor([[value]
|
||||
]).repeat(result.shape[0], 1)
|
||||
pts_variable = pts_variable.as_subclass(LabelTensor)
|
||||
pts_variable.labels = [variable]
|
||||
|
||||
result = result.append(pts_variable, mode='std')
|
||||
return result
|
||||
|
||||
def _single_points_sample(n, variables):
|
||||
"""Sample a single point in one dimension.
|
||||
|
||||
:param n: Number of points to sample.
|
||||
:type n: int
|
||||
:param variables: Variables to sample from.
|
||||
:type variables: list[str]
|
||||
:return: Sample points.
|
||||
:rtype: list[torch.Tensor]
|
||||
"""
|
||||
tmp = []
|
||||
for variable in variables:
|
||||
if variable in self.fixed_.keys():
|
||||
value = self.fixed_[variable]
|
||||
pts_variable = torch.tensor([[value]]).repeat(n, 1)
|
||||
pts_variable = pts_variable.as_subclass(LabelTensor)
|
||||
pts_variable.labels = [variable]
|
||||
tmp.append(pts_variable)
|
||||
|
||||
result = tmp[0]
|
||||
for i in tmp[1:]:
|
||||
result = result.append(i, mode='std')
|
||||
|
||||
return result
|
||||
|
||||
if self.fixed_ and (not self.range_):
|
||||
return _single_points_sample(n, variables)
|
||||
|
||||
if variables == 'all':
|
||||
variables = list(self.range_.keys()) + list(self.fixed_.keys())
|
||||
|
||||
if mode in ['random']:
|
||||
return _Nd_sampler(n, mode, variables)
|
||||
else:
|
||||
raise ValueError(f'mode={mode} is not valid.')
|
||||
Reference in New Issue
Block a user