CUDA option for labeltensor (#23)

* fix cuda device for labeltensor
This commit is contained in:
Nicola Demo
2022-09-08 17:31:49 +02:00
committed by GitHub
parent 9b2ab7be41
commit 06932196a8
5 changed files with 61 additions and 56 deletions

View File

@@ -116,7 +116,10 @@ class LabelTensor(torch.Tensor):
new_data = self[:, indeces].float() new_data = self[:, indeces].float()
new_labels = [self.labels[idx] for idx in indeces] new_labels = [self.labels[idx] for idx in indeces]
extracted_tensor = LabelTensor(new_data, new_labels)
extracted_tensor = new_data.as_subclass(LabelTensor)
extracted_tensor.labels = new_labels
return extracted_tensor return extracted_tensor
@@ -150,9 +153,15 @@ class LabelTensor(torch.Tensor):
tensor2.repeat_interleave(n1, dim=0), tensor2.repeat_interleave(n1, dim=0),
labels=tensor2.labels) labels=tensor2.labels)
new_tensor = torch.cat((tensor1, tensor2), dim=1) new_tensor = torch.cat((tensor1, tensor2), dim=1)
return LabelTensor(new_tensor, new_labels)
new_tensor = new_tensor.as_subclass(LabelTensor)
new_tensor.labels = new_labels
return new_tensor
def __str__(self): def __str__(self):
s = f'labels({str(self.labels)})\n' if hasattr(self, 'labels'):
s = f'labels({str(self.labels)})\n'
else:
s = 'no labels\n'
s += super().__str__() s += super().__str__()
return s return s

View File

@@ -129,10 +129,10 @@ class DeepONet(torch.nn.Module):
# output_ = self.reduction(inner_input) # output_ = self.reduction(inner_input)
# print(output_.shape) # print(output_.shape)
print(branch_output.shape)
print(trunk_output.shape)
output_ = self.reduction(trunk_output * branch_output) output_ = self.reduction(trunk_output * branch_output)
output_ = LabelTensor(output_, self.output_variables) # output_ = LabelTensor(output_, self.output_variables)
output_ = output_.as_subclass(LabelTensor)
output_.labels = self.output_variables
# local_size = int(trunk_output.shape[1]/self.output_dimension) # local_size = int(trunk_output.shape[1]/self.output_dimension)
# for i, var in enumerate(self.output_variables): # for i, var in enumerate(self.output_variables):
# start = i*local_size # start = i*local_size

View File

@@ -97,9 +97,9 @@ class FeedForward(torch.nn.Module):
for i, feature in enumerate(self.extra_features): for i, feature in enumerate(self.extra_features):
x = x.append(feature(x)) x = x.append(feature(x))
output = self.model(x) output = self.model(x).as_subclass(LabelTensor)
if self.output_variables: if self.output_variables:
return LabelTensor(output, self.output_variables) output.labels = self.output_variables
else:
return output return output

View File

@@ -19,14 +19,16 @@ def grad(output_, input_, components=None, d=None):
raise RuntimeError raise RuntimeError
output_fieldname = output_.labels[0] output_fieldname = output_.labels[0]
gradients = torch.autograd.grad( gradients = torch.autograd.grad(
output_, output_,
input_, input_,
grad_outputs=torch.ones(output_.size()).to( grad_outputs=torch.ones(output_.size(), dtype=output_.dtype,
dtype=input_.dtype, device=output_.device),
device=input_.device), create_graph=True,
create_graph=True, retain_graph=True, allow_unused=True)[0] retain_graph=True,
allow_unused=True
)[0]
gradients.labels = input_.labels gradients.labels = input_.labels
gradients = gradients.extract(d) gradients = gradients.extract(d)
gradients.labels = [f'd{output_fieldname}d{i}' for i in d] gradients.labels = [f'd{output_fieldname}d{i}' for i in d]
@@ -83,19 +85,16 @@ def div(output_, input_, components=None, d=None):
raise ValueError raise ValueError
grad_output = grad(output_, input_, components, d) grad_output = grad(output_, input_, components, d)
div = torch.zeros(input_.shape[0], 1) div = torch.zeros(input_.shape[0], 1, device=output_.device)
# print(grad_output)
# print('empty', div)
labels = [None] * len(components) labels = [None] * len(components)
for i, (c, d) in enumerate(zip(components, d)): for i, (c, d) in enumerate(zip(components, d)):
c_fields = f'd{c}d{d}' c_fields = f'd{c}d{d}'
# print(c_fields)
div[:, 0] += grad_output.extract(c_fields).sum(axis=1) div[:, 0] += grad_output.extract(c_fields).sum(axis=1)
labels[i] = c_fields labels[i] = c_fields
# print('full', div)
# print(labels)
return LabelTensor(div, ['+'.join(labels)]) div = div.as_subclass(LabelTensor)
div.labels = ['+'.join(labels)]
return div
def nabla(output_, input_, components=None, d=None, method='std'): def nabla(output_, input_, components=None, d=None, method='std'):
@@ -120,14 +119,15 @@ def nabla(output_, input_, components=None, d=None, method='std'):
if len(components) == 1: if len(components) == 1:
grad_output = grad(output_, input_, components=components, d=d) grad_output = grad(output_, input_, components=components, d=d)
result = torch.zeros(output_.shape[0], 1) result = torch.zeros(output_.shape[0], 1, device=output_.device)
for i, label in enumerate(grad_output.labels): for i, label in enumerate(grad_output.labels):
gg = grad(grad_output, input_, d=d, components=[label]) gg = grad(grad_output, input_, d=d, components=[label])
result[:, 0] += gg[:, i] result[:, 0] += gg[:, i]
labels = [f'dd{components[0]}'] labels = [f'dd{components[0]}']
else: else:
result = torch.empty(input_.shape[0], len(components)) result = torch.empty(input_.shape[0], len(components),
device=output_.device)
labels = [None] * len(components) labels = [None] * len(components)
for idx, (ci, di) in enumerate(zip(components, d)): for idx, (ci, di) in enumerate(zip(components, d)):
@@ -140,28 +140,20 @@ def nabla(output_, input_, components=None, d=None, method='std'):
result[:, idx] = grad(grad_output, input_, d=di).flatten() result[:, idx] = grad(grad_output, input_, d=di).flatten()
labels[idx] = f'dd{ci}dd{di}' labels[idx] = f'dd{ci}dd{di}'
return LabelTensor(result, labels) result = result.as_subclass(LabelTensor)
result.labels = labels
return result
def advection(output_, input_): def advection(output_, input_, velocity_field, components=None, d=None):
""" if d is None:
TODO d = input_.labels
"""
dimension = len(output_.labels) if components is None:
for i, label in enumerate(output_.labels): components = output_.labels
# compute u dot gradient in each direction
gradient_loc = grad(output_.extract([label]), tmp = grad(output_, input_, components, d
input_).extract(input_.labels[:dimension]) ).reshape(-1, len(components), len(d)).transpose(0, 1)
dim_0 = gradient_loc.shape[0]
dim_1 = gradient_loc.shape[1] tmp *= output_.extract(velocity_field)
u_dot_grad_loc = torch.bmm(output_.view(dim_0, 1, dim_1), return tmp.sum(dim=2).T
gradient_loc.view(dim_0, dim_1, 1))
u_dot_grad_loc = LabelTensor(torch.reshape(u_dot_grad_loc,
(u_dot_grad_loc.shape[0],
u_dot_grad_loc.shape[1])),
[input_.labels[i]])
if i == 0:
adv_term = u_dot_grad_loc
else:
adv_term = adv_term.append(u_dot_grad_loc)
return adv_term

View File

@@ -70,24 +70,24 @@ class Plotter:
""" """
""" """
grids = [p_.reshape(res, res) for p_ in pts.extract(v).T] grids = [p_.reshape(res, res) for p_ in pts.extract(v).cpu().T]
pred_output = pred.reshape(res, res) pred_output = pred.reshape(res, res)
if truth_solution: if truth_solution:
truth_output = truth_solution(pts).float().reshape(res, res) truth_output = truth_solution(pts).float().reshape(res, res)
fig, ax = plt.subplots(nrows=1, ncols=3, figsize=(16, 6)) fig, ax = plt.subplots(nrows=1, ncols=3, figsize=(16, 6))
cb = getattr(ax[0], method)(*grids, pred_output.detach(), **kwargs) cb = getattr(ax[0], method)(*grids, pred_output.cpu().detach(), **kwargs)
fig.colorbar(cb, ax=ax[0]) fig.colorbar(cb, ax=ax[0])
cb = getattr(ax[1], method)(*grids, truth_output.detach(), **kwargs) cb = getattr(ax[1], method)(*grids, truth_output.cpu().detach(), **kwargs)
fig.colorbar(cb, ax=ax[1]) fig.colorbar(cb, ax=ax[1])
cb = getattr(ax[2], method)(*grids, cb = getattr(ax[2], method)(*grids,
(truth_output-pred_output).detach(), (truth_output-pred_output).cpu().detach(),
**kwargs) **kwargs)
fig.colorbar(cb, ax=ax[2]) fig.colorbar(cb, ax=ax[2])
else: else:
fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(8, 6)) fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(8, 6))
cb = getattr(ax, method)(*grids, pred_output.detach(), **kwargs) cb = getattr(ax, method)(*grids, pred_output.cpu().detach(), **kwargs)
fig.colorbar(cb, ax=ax) fig.colorbar(cb, ax=ax)
@@ -103,9 +103,13 @@ class Plotter:
] ]
pts = pinn.problem.domain.sample(res, 'grid', variables=v) pts = pinn.problem.domain.sample(res, 'grid', variables=v)
for variable, value in fixed_variables.items(): fixed_pts = torch.ones(pts.shape[0], len(fixed_variables))
new = LabelTensor(torch.ones(pts.shape[0], 1)*value, [variable]) fixed_pts *= torch.tensor(list(fixed_variables.values()))
pts = pts.append(new) fixed_pts = fixed_pts.as_subclass(LabelTensor)
fixed_pts.labels = list(fixed_variables.keys())
pts = pts.append(fixed_pts)
pts = pts.to(device=pinn.device)
predicted_output = pinn.model(pts) predicted_output = pinn.model(pts)
if isinstance(components, str): if isinstance(components, str):