CUDA option for labeltensor (#23)

* fix cuda device for labeltensor
This commit is contained in:
Nicola Demo
2022-09-08 17:31:49 +02:00
committed by GitHub
parent 9b2ab7be41
commit 06932196a8
5 changed files with 61 additions and 56 deletions

View File

@@ -116,7 +116,10 @@ class LabelTensor(torch.Tensor):
new_data = self[:, indeces].float()
new_labels = [self.labels[idx] for idx in indeces]
extracted_tensor = LabelTensor(new_data, new_labels)
extracted_tensor = new_data.as_subclass(LabelTensor)
extracted_tensor.labels = new_labels
return extracted_tensor
@@ -150,9 +153,15 @@ class LabelTensor(torch.Tensor):
tensor2.repeat_interleave(n1, dim=0),
labels=tensor2.labels)
new_tensor = torch.cat((tensor1, tensor2), dim=1)
return LabelTensor(new_tensor, new_labels)
new_tensor = new_tensor.as_subclass(LabelTensor)
new_tensor.labels = new_labels
return new_tensor
def __str__(self):
s = f'labels({str(self.labels)})\n'
if hasattr(self, 'labels'):
s = f'labels({str(self.labels)})\n'
else:
s = 'no labels\n'
s += super().__str__()
return s

View File

@@ -129,10 +129,10 @@ class DeepONet(torch.nn.Module):
# output_ = self.reduction(inner_input)
# print(output_.shape)
print(branch_output.shape)
print(trunk_output.shape)
output_ = self.reduction(trunk_output * branch_output)
output_ = LabelTensor(output_, self.output_variables)
# output_ = LabelTensor(output_, self.output_variables)
output_ = output_.as_subclass(LabelTensor)
output_.labels = self.output_variables
# local_size = int(trunk_output.shape[1]/self.output_dimension)
# for i, var in enumerate(self.output_variables):
# start = i*local_size

View File

@@ -97,9 +97,9 @@ class FeedForward(torch.nn.Module):
for i, feature in enumerate(self.extra_features):
x = x.append(feature(x))
output = self.model(x)
output = self.model(x).as_subclass(LabelTensor)
if self.output_variables:
return LabelTensor(output, self.output_variables)
else:
return output
output.labels = self.output_variables
return output

View File

@@ -19,14 +19,16 @@ def grad(output_, input_, components=None, d=None):
raise RuntimeError
output_fieldname = output_.labels[0]
gradients = torch.autograd.grad(
output_,
input_,
grad_outputs=torch.ones(output_.size()).to(
dtype=input_.dtype,
device=input_.device),
create_graph=True, retain_graph=True, allow_unused=True)[0]
grad_outputs=torch.ones(output_.size(), dtype=output_.dtype,
device=output_.device),
create_graph=True,
retain_graph=True,
allow_unused=True
)[0]
gradients.labels = input_.labels
gradients = gradients.extract(d)
gradients.labels = [f'd{output_fieldname}d{i}' for i in d]
@@ -83,19 +85,16 @@ def div(output_, input_, components=None, d=None):
raise ValueError
grad_output = grad(output_, input_, components, d)
div = torch.zeros(input_.shape[0], 1)
# print(grad_output)
# print('empty', div)
div = torch.zeros(input_.shape[0], 1, device=output_.device)
labels = [None] * len(components)
for i, (c, d) in enumerate(zip(components, d)):
c_fields = f'd{c}d{d}'
# print(c_fields)
div[:, 0] += grad_output.extract(c_fields).sum(axis=1)
labels[i] = c_fields
# print('full', div)
# print(labels)
return LabelTensor(div, ['+'.join(labels)])
div = div.as_subclass(LabelTensor)
div.labels = ['+'.join(labels)]
return div
def nabla(output_, input_, components=None, d=None, method='std'):
@@ -120,14 +119,15 @@ def nabla(output_, input_, components=None, d=None, method='std'):
if len(components) == 1:
grad_output = grad(output_, input_, components=components, d=d)
result = torch.zeros(output_.shape[0], 1)
result = torch.zeros(output_.shape[0], 1, device=output_.device)
for i, label in enumerate(grad_output.labels):
gg = grad(grad_output, input_, d=d, components=[label])
gg = grad(grad_output, input_, d=d, components=[label])
result[:, 0] += gg[:, i]
labels = [f'dd{components[0]}']
else:
result = torch.empty(input_.shape[0], len(components))
result = torch.empty(input_.shape[0], len(components),
device=output_.device)
labels = [None] * len(components)
for idx, (ci, di) in enumerate(zip(components, d)):
@@ -140,28 +140,20 @@ def nabla(output_, input_, components=None, d=None, method='std'):
result[:, idx] = grad(grad_output, input_, d=di).flatten()
labels[idx] = f'dd{ci}dd{di}'
return LabelTensor(result, labels)
result = result.as_subclass(LabelTensor)
result.labels = labels
return result
def advection(output_, input_):
"""
TODO
"""
dimension = len(output_.labels)
for i, label in enumerate(output_.labels):
# compute u dot gradient in each direction
gradient_loc = grad(output_.extract([label]),
input_).extract(input_.labels[:dimension])
dim_0 = gradient_loc.shape[0]
dim_1 = gradient_loc.shape[1]
u_dot_grad_loc = torch.bmm(output_.view(dim_0, 1, dim_1),
gradient_loc.view(dim_0, dim_1, 1))
u_dot_grad_loc = LabelTensor(torch.reshape(u_dot_grad_loc,
(u_dot_grad_loc.shape[0],
u_dot_grad_loc.shape[1])),
[input_.labels[i]])
if i == 0:
adv_term = u_dot_grad_loc
else:
adv_term = adv_term.append(u_dot_grad_loc)
return adv_term
def advection(output_, input_, velocity_field, components=None, d=None):
if d is None:
d = input_.labels
if components is None:
components = output_.labels
tmp = grad(output_, input_, components, d
).reshape(-1, len(components), len(d)).transpose(0, 1)
tmp *= output_.extract(velocity_field)
return tmp.sum(dim=2).T

View File

@@ -70,24 +70,24 @@ class Plotter:
"""
"""
grids = [p_.reshape(res, res) for p_ in pts.extract(v).T]
grids = [p_.reshape(res, res) for p_ in pts.extract(v).cpu().T]
pred_output = pred.reshape(res, res)
if truth_solution:
truth_output = truth_solution(pts).float().reshape(res, res)
fig, ax = plt.subplots(nrows=1, ncols=3, figsize=(16, 6))
cb = getattr(ax[0], method)(*grids, pred_output.detach(), **kwargs)
cb = getattr(ax[0], method)(*grids, pred_output.cpu().detach(), **kwargs)
fig.colorbar(cb, ax=ax[0])
cb = getattr(ax[1], method)(*grids, truth_output.detach(), **kwargs)
cb = getattr(ax[1], method)(*grids, truth_output.cpu().detach(), **kwargs)
fig.colorbar(cb, ax=ax[1])
cb = getattr(ax[2], method)(*grids,
(truth_output-pred_output).detach(),
(truth_output-pred_output).cpu().detach(),
**kwargs)
fig.colorbar(cb, ax=ax[2])
else:
fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(8, 6))
cb = getattr(ax, method)(*grids, pred_output.detach(), **kwargs)
cb = getattr(ax, method)(*grids, pred_output.cpu().detach(), **kwargs)
fig.colorbar(cb, ax=ax)
@@ -103,9 +103,13 @@ class Plotter:
]
pts = pinn.problem.domain.sample(res, 'grid', variables=v)
for variable, value in fixed_variables.items():
new = LabelTensor(torch.ones(pts.shape[0], 1)*value, [variable])
pts = pts.append(new)
fixed_pts = torch.ones(pts.shape[0], len(fixed_variables))
fixed_pts *= torch.tensor(list(fixed_variables.values()))
fixed_pts = fixed_pts.as_subclass(LabelTensor)
fixed_pts.labels = list(fixed_variables.keys())
pts = pts.append(fixed_pts)
pts = pts.to(device=pinn.device)
predicted_output = pinn.model(pts)
if isinstance(components, str):