adding test supervised solver
This commit is contained in:
committed by
Nicola Demo
parent
c90301c204
commit
09d013e8fc
101
tests/test_solvers/test_supervised_solver.py
Normal file
101
tests/test_solvers/test_supervised_solver.py
Normal file
@@ -0,0 +1,101 @@
|
||||
import torch
|
||||
|
||||
from pina.problem import AbstractProblem
|
||||
from pina import Condition, LabelTensor
|
||||
from pina.solvers import SupervisedSolver
|
||||
from pina.trainer import Trainer
|
||||
from pina.model import FeedForward
|
||||
from pina.loss import LpLoss
|
||||
|
||||
|
||||
class NeuralOperatorProblem(AbstractProblem):
|
||||
input_variables = ['u_0', 'u_1']
|
||||
output_variables = ['u']
|
||||
conditions = {'data' : Condition(input_points=LabelTensor(torch.rand(100, 2), input_variables),
|
||||
output_points=LabelTensor(torch.rand(100, 1), output_variables))}
|
||||
|
||||
class myFeature(torch.nn.Module):
|
||||
"""
|
||||
Feature: sin(x)
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
super(myFeature, self).__init__()
|
||||
|
||||
def forward(self, x):
|
||||
t = (torch.sin(x.extract(['u_0']) * torch.pi) *
|
||||
torch.sin(x.extract(['u_1']) * torch.pi))
|
||||
return LabelTensor(t, ['sin(x)sin(y)'])
|
||||
|
||||
|
||||
# make the problem + extra feats
|
||||
problem = NeuralOperatorProblem()
|
||||
extra_feats = [myFeature()]
|
||||
model = FeedForward(len(problem.input_variables),
|
||||
len(problem.output_variables))
|
||||
model_extra_feats = FeedForward(
|
||||
len(problem.input_variables) + 1,
|
||||
len(problem.output_variables))
|
||||
|
||||
|
||||
def test_constructor():
|
||||
SupervisedSolver(problem=problem, model=model, extra_features=None)
|
||||
|
||||
|
||||
def test_constructor_extra_feats():
|
||||
SupervisedSolver(problem=problem, model=model_extra_feats, extra_features=extra_feats)
|
||||
|
||||
|
||||
def test_train_cpu():
|
||||
solver = SupervisedSolver(problem = problem, model=model, extra_features=None, loss=LpLoss())
|
||||
trainer = Trainer(solver=solver, max_epochs=3, accelerator='cpu', batch_size=20)
|
||||
trainer.train()
|
||||
|
||||
|
||||
def test_train_restore():
|
||||
tmpdir = "tests/tmp_restore"
|
||||
solver = SupervisedSolver(problem=problem,
|
||||
model=model,
|
||||
extra_features=None,
|
||||
loss=LpLoss())
|
||||
trainer = Trainer(solver=solver,
|
||||
max_epochs=5,
|
||||
accelerator='cpu',
|
||||
default_root_dir=tmpdir)
|
||||
trainer.train()
|
||||
ntrainer = Trainer(solver=solver, max_epochs=15, accelerator='cpu')
|
||||
t = ntrainer.train(
|
||||
ckpt_path=f'{tmpdir}/lightning_logs/version_0/checkpoints/epoch=4-step=5.ckpt')
|
||||
import shutil
|
||||
shutil.rmtree(tmpdir)
|
||||
|
||||
|
||||
def test_train_load():
|
||||
tmpdir = "tests/tmp_load"
|
||||
solver = SupervisedSolver(problem=problem,
|
||||
model=model,
|
||||
extra_features=None,
|
||||
loss=LpLoss())
|
||||
trainer = Trainer(solver=solver,
|
||||
max_epochs=15,
|
||||
accelerator='cpu',
|
||||
default_root_dir=tmpdir)
|
||||
trainer.train()
|
||||
new_solver = SupervisedSolver.load_from_checkpoint(
|
||||
f'{tmpdir}/lightning_logs/version_0/checkpoints/epoch=14-step=15.ckpt',
|
||||
problem = problem, model=model)
|
||||
test_pts = LabelTensor(torch.rand(20, 2), problem.input_variables)
|
||||
assert new_solver.forward(test_pts).shape == (20, 1)
|
||||
assert new_solver.forward(test_pts).shape == solver.forward(test_pts).shape
|
||||
torch.testing.assert_close(
|
||||
new_solver.forward(test_pts),
|
||||
solver.forward(test_pts))
|
||||
import shutil
|
||||
shutil.rmtree(tmpdir)
|
||||
|
||||
def test_train_extra_feats_cpu():
|
||||
pinn = SupervisedSolver(problem=problem,
|
||||
model=model_extra_feats,
|
||||
extra_features=extra_feats)
|
||||
trainer = Trainer(solver=pinn, max_epochs=5, accelerator='cpu')
|
||||
trainer.train()
|
||||
Reference in New Issue
Block a user