Inverse problem implementation (#177)

* inverse problem implementation

* add tutorial7 for inverse Poisson problem

* fix doc in equation, equation_interface, system_equation

---------

Co-authored-by: Dario Coscia <dariocoscia@dhcp-015.eduroam.sissa.it>
This commit is contained in:
Anna Ivagnes
2023-11-15 14:02:16 +01:00
committed by Nicola Demo
parent a9f14ac323
commit 0b7a307cf1
21 changed files with 967 additions and 40 deletions

View File

@@ -1,7 +1,7 @@
PINA Tutorials
==============
In this folder we collect useful tutorials in order to understand the principles and the potential of **PINA**.
In this folder we collect useful tutorials in order to understand the principles and the potential of **PINA**.
Getting started with PINA
-------------------------
@@ -20,6 +20,7 @@ Physics Informed Neural Networks
Two dimensional Poisson problem using Extra Features Learning<tutorials/tutorial2/tutorial.rst>
Two dimensional Wave problem with hard constraint<tutorials/tutorial3/tutorial.rst>
Resolution of a 2D Poisson inverse problem<tutorials/tutorial7/tutorial.rst>
Neural Operator Learning
@@ -36,4 +37,5 @@ Supervised Learning
:maxdepth: 3
:titlesonly:
Unstructured convolutional autoencoder via continuous convolution<tutorials/tutorial4/tutorial.rst>
Unstructured convolutional autoencoder via continuous convolution<tutorials/tutorial4/tutorial.rst>

View File

@@ -0,0 +1,217 @@
Tutorial 7: Resolution of an inverse problem
============================================
Introduction to the inverse problem
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This tutorial shows how to solve an inverse Poisson problem with
Physics-Informed Neural Networks. The problem definition is that of a
Poisson problem with homogeneous boundary conditions and it reads:
:raw-latex:`\begin{equation}
\begin{cases}
\Delta u = e^{-2(x-\mu_1)^2-2(y-\mu_2)^2} \text{ in } \Omega\, ,\\
u = 0 \text{ on }\partial \Omega,\\
u(\mu_1, \mu_2) = \text{ data}
\end{cases}
\end{equation}` where :math:`\Omega` is a square domain
:math:`[-2, 2] \times [-2, 2]`, and
:math:`\partial \Omega=\Gamma_1 \cup \Gamma_2 \cup \Gamma_3 \cup \Gamma_4`
is the union of the boundaries of the domain.
This kind of problem, namely the “inverse problem”, has two main goals:
- find the solution :math:`u` that satisfies the Poisson equation; -
find the unknown parameters (:math:`\mu_1`, :math:`\mu_2`) that better
fit some given data (third equation in the system above).
In order to achieve both the goals we will need to define an
``InverseProblem`` in PINA.
Lets start with useful imports.
.. code:: ipython3
import matplotlib.pyplot as plt
import torch
from pytorch_lightning.callbacks import Callback
from pina.problem import SpatialProblem, InverseProblem
from pina.operators import laplacian
from pina.model import FeedForward
from pina.equation import Equation, FixedValue
from pina import Condition, Trainer
from pina.solvers import PINN
from pina.geometry import CartesianDomain
Then, we import the pre-saved data, for (:math:`\mu_1`,
:math:`\mu_2`)=(:math:`0.5`, :math:`0.5`). These two values are the
optimal parameters that we want to find through the neural network
training. In particular, we import the ``input_points``\ (the spatial
coordinates), and the ``output_points`` (the corresponding :math:`u`
values evaluated at the ``input_points``).
.. code:: ipython3
data_output = torch.load('data/pinn_solution_0.5_0.5').detach()
data_input = torch.load('data/pts_0.5_0.5')
Moreover, lets plot also the data points and the reference solution:
this is the expected output of the neural network.
.. code:: ipython3
points = data_input.extract(['x', 'y']).detach().numpy()
truth = data_output.detach().numpy()
plt.scatter(points[:, 0], points[:, 1], c=truth, s=8)
plt.axis('equal')
plt.colorbar()
plt.show()
.. image:: tutorial_files/output_8_0.png
Inverse problem definition in PINA
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Then, we initialize the Poisson problem, that is inherited from the
``SpatialProblem`` and from the ``InverseProblem`` classes. We here have
to define all the variables, and the domain where our unknown parameters
(:math:`\mu_1`, :math:`\mu_2`) belong. Notice that the laplace equation
takes as inputs also the unknown variables, that will be treated as
parameters that the neural network optimizes during the training
process.
.. code:: ipython3
### Define ranges of variables
x_min = -2
x_max = 2
y_min = -2
y_max = 2
class Poisson(SpatialProblem, InverseProblem):
'''
Problem definition for the Poisson equation.
'''
output_variables = ['u']
spatial_domain = CartesianDomain({'x': [x_min, x_max], 'y': [y_min, y_max]})
# define the ranges for the parameters
unknown_parameter_domain = CartesianDomain({'mu1': [-1, 1], 'mu2': [-1, 1]})
def laplace_equation(input_, output_, params_):
'''
Laplace equation with a force term.
'''
force_term = torch.exp(
- 2*(input_.extract(['x']) - params_['mu1'])**2
- 2*(input_.extract(['y']) - params_['mu2'])**2)
delta_u = laplacian(output_, input_, components=['u'], d=['x', 'y'])
return delta_u - force_term
# define the conditions for the loss (boundary conditions, equation, data)
conditions = {
'gamma1': Condition(location=CartesianDomain({'x': [x_min, x_max],
'y': y_max}),
equation=FixedValue(0.0, components=['u'])),
'gamma2': Condition(location=CartesianDomain({'x': [x_min, x_max], 'y': y_min
}),
equation=FixedValue(0.0, components=['u'])),
'gamma3': Condition(location=CartesianDomain({'x': x_max, 'y': [y_min, y_max]
}),
equation=FixedValue(0.0, components=['u'])),
'gamma4': Condition(location=CartesianDomain({'x': x_min, 'y': [y_min, y_max]
}),
equation=FixedValue(0.0, components=['u'])),
'D': Condition(location=CartesianDomain({'x': [x_min, x_max], 'y': [y_min, y_max]
}),
equation=Equation(laplace_equation)),
'data': Condition(input_points=data_input.extract(['x', 'y']), output_points=data_output)
}
problem = Poisson()
Then, we define the model of the neural network we want to use. Here we
used a model which impose hard constrains on the boundary conditions, as
also done in the Wave tutorial!
.. code:: ipython3
model = FeedForward(
layers=[20, 20, 20],
func=torch.nn.Softplus,
output_dimensions=len(problem.output_variables),
input_dimensions=len(problem.input_variables)
)
After that, we discretize the spatial domain.
.. code:: ipython3
problem.discretise_domain(20, 'grid', locations=['D'], variables=['x', 'y'])
problem.discretise_domain(1000, 'random', locations=['gamma1', 'gamma2',
'gamma3', 'gamma4'], variables=['x', 'y'])
Here, we define a simple callback for the trainer. We use this callback
to save the parameters predicted by the neural network during the
training. The parameters are saved every 100 epochs as ``torch`` tensors
in a specified directory (``tmp_dir`` in our case). The goal is to read
the saved parameters after training and plot their trend across the
epochs.
.. code:: ipython3
# temporary directory for saving logs of training
tmp_dir = "tmp_poisson_inverse"
class SaveParameters(Callback):
'''
Callback to save the parameters of the model every 100 epochs.
'''
def on_train_epoch_end(self, trainer, __):
if trainer.current_epoch % 100 == 99:
torch.save(trainer.solver.problem.unknown_parameters, '{}/parameters_epoch{}'.format(tmp_dir, trainer.current_epoch))
Then, we define the ``PINN`` object and train the solver using the
``Trainer``.
.. code:: ipython3
### train the problem with PINN
max_epochs = 5000
pinn = PINN(problem, model, optimizer_kwargs={'lr':0.005})
# define the trainer for the solver
trainer = Trainer(solver=pinn, accelerator='cpu', max_epochs=max_epochs,
default_root_dir=tmp_dir, callbacks=[SaveParameters()])
trainer.train()
One can now see how the parameters vary during the training by reading
the saved solution and plotting them. The plot shows that the parameters
stabilize to their true value before reaching the epoch :math:`1000`!
.. code:: ipython3
epochs_saved = range(99, max_epochs, 100)
parameters = torch.empty((int(max_epochs/100), 2))
for i, epoch in enumerate(epochs_saved):
params_torch = torch.load('{}/parameters_epoch{}'.format(tmp_dir, epoch))
for e, var in enumerate(pinn.problem.unknown_variables):
parameters[i, e] = params_torch[var].data
# Plot parameters
plt.close()
plt.plot(epochs_saved, parameters[:, 0], label='mu1', marker='o')
plt.plot(epochs_saved, parameters[:, 1], label='mu2', marker='s')
plt.ylim(-1, 1)
plt.grid()
plt.legend()
plt.xlabel('Epoch')
plt.ylabel('Parameter value')
plt.show()
.. image:: tutorial_files/output_21_0.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 10 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 112 KiB

View File

@@ -37,7 +37,7 @@ class Condition:
>>> example_input_pts = LabelTensor(
>>> torch.tensor([[0, 0, 0]]), ['x', 'y', 'z'])
>>> example_output_pts = LabelTensor(torch.tensor([[1, 2]]), ['a', 'b'])
>>>
>>>
>>> Condition(
>>> input_points=example_input_pts,
>>> output_points=example_output_pts)

View File

@@ -9,4 +9,4 @@ __all__ = [
from .equation import Equation
from .equation_factory import FixedFlux, FixedGradient, Laplace, FixedValue
from .system_equation import SystemEquation
from .system_equation import SystemEquation

View File

@@ -8,7 +8,7 @@ class Equation(EquationInterface):
"""
Equation class for specifing any equation in PINA.
Each ``equation`` passed to a ``Condition`` object
must be an ``Equation`` or ``SystemEquation``.
must be an ``Equation`` or ``SystemEquation``.
:param equation: A ``torch`` callable equation to
evaluate the residual.
@@ -20,14 +20,26 @@ class Equation(EquationInterface):
f'{equation}')
self.__equation = equation
def residual(self, input_, output_):
def residual(self, input_, output_, params_ = None):
"""
Residual computation of the equation.
:param LabelTensor input_: Input points to evaluate the equation.
:param LabelTensor output_: Output vectors given my a model (e.g,
:param LabelTensor output_: Output vectors given by a model (e.g,
a ``FeedForward`` model).
:param dict params_: Dictionary of parameters related to the inverse
problem (if any).
If the equation is not related to an ``InverseProblem``, the
parameters are initialized to ``None`` and the residual is
computed as ``equation(input_, output_)``.
Otherwise, the parameters are automatically initialized in the
ranges specified by the user.
:return: The residual evaluation of the specified equation.
:rtype: LabelTensor
"""
return self.__equation(input_, output_)
if params_ is None:
result = self.__equation(input_, output_)
else:
result = self.__equation(input_, output_, params_)
return result

View File

@@ -11,3 +11,17 @@ class EquationInterface(metaclass=ABCMeta):
the output variables, the condition(s), and the domain(s) where the
conditions are applied.
"""
@abstractmethod
def residual(self, input_, output_, params_):
"""
Residual computation of the equation.
:param LabelTensor input_: Input points to evaluate the equation.
:param LabelTensor output_: Output vectors given by my model (e.g., a ``FeedForward`` model).
:param dict params_: Dictionary of unknown parameters, eventually
related to an ``InverseProblem``.
:return: The residual evaluation of the specified equation.
:rtype: LabelTensor
"""
pass

View File

@@ -11,14 +11,14 @@ class SystemEquation(Equation):
System of Equation class for specifing any system
of equations in PINA.
Each ``equation`` passed to a ``Condition`` object
must be an ``Equation`` or ``SystemEquation``.
A ``SystemEquation`` is specified by a list of
must be an ``Equation`` or ``SystemEquation``.
A ``SystemEquation`` is specified by a list of
equations.
:param Callable equation: A ``torch`` callable equation to
evaluate the residual
:param str reduction: Specifies the reduction to apply to the output:
``none`` | ``mean`` | ``sum`` | ``callable``. ``none``: no reduction
``none`` | ``mean`` | ``sum`` | ``callable``. ``none``: no reduction
will be applied, ``mean``: the sum of the output will be divided
by the number of elements in the output, ``sum``: the output will
be summed. ``callable`` a callable function to perform reduction,
@@ -43,19 +43,28 @@ class SystemEquation(Equation):
raise NotImplementedError(
'Only mean and sum reductions implemented.')
def residual(self, input_, output_):
def residual(self, input_, output_, params_=None):
"""
Residual computation of the equation.
Residual computation for the equations of the system.
:param LabelTensor input_: Input points to evaluate the equation.
:param LabelTensor output_: Output vectors given my a model (e.g,
:param LabelTensor input_: Input points to evaluate the system of
equations.
:param LabelTensor output_: Output vectors given by a model (e.g,
a ``FeedForward`` model).
:return: The residual evaluation of the specified equation,
:param dict params_: Dictionary of parameters related to the inverse
problem (if any).
If the equation is not related to an ``InverseProblem``, the
parameters are initialized to ``None`` and the residual is
computed as ``equation(input_, output_)``.
Otherwise, the parameters are automatically initialized in the
ranges specified by the user.
:return: The residual evaluation of the specified system of equations,
aggregated by the ``reduction`` defined in the ``__init__``.
:rtype: LabelTensor
"""
residual = torch.hstack(
[equation.residual(input_, output_) for equation in self.equations])
[equation.residual(input_, output_, params_) for equation in self.equations])
if self.reduction == 'none':
return residual

View File

@@ -205,6 +205,7 @@ class Plotter:
plt.savefig(filename)
else:
plt.show()
plt.close()
def plot_loss(self,
trainer,

View File

@@ -3,9 +3,11 @@ __all__ = [
'SpatialProblem',
'TimeDependentProblem',
'ParametricProblem',
'InverseProblem',
]
from .abstract_problem import AbstractProblem
from .spatial_problem import SpatialProblem
from .timedep_problem import TimeDependentProblem
from .parametric_problem import ParametricProblem
from .inverse_problem import InverseProblem

View File

@@ -109,6 +109,14 @@ class AbstractProblem(metaclass=ABCMeta):
samples = condition.input_points
self.input_pts[condition_name] = samples
self._have_sampled_points[condition_name] = True
if hasattr(self, 'unknown_parameter_domain'):
# initialize the unknown parameters of the inverse problem given
# the domain the user gives
self.unknown_parameters = {}
for i, var in enumerate(self.unknown_variables):
range_var = self.unknown_parameter_domain.range_[var]
tensor_var = torch.rand(1, requires_grad=True) * range_var[1] + range_var[0]
self.unknown_parameters[var] = torch.nn.Parameter(tensor_var)
def discretise_domain(self,
n,
@@ -203,6 +211,7 @@ class AbstractProblem(metaclass=ABCMeta):
self.input_variables):
self._have_sampled_points[location] = True
def add_points(self, new_points):
"""
Adding points to the already sampled points.
@@ -237,7 +246,7 @@ class AbstractProblem(metaclass=ABCMeta):
@property
def have_sampled_points(self):
"""
Check if all points for
Check if all points for
``Location`` are sampled.
"""
return all(self._have_sampled_points.values())
@@ -245,7 +254,7 @@ class AbstractProblem(metaclass=ABCMeta):
@property
def not_sampled_points(self):
"""
Check which points are
Check which points are
not sampled.
"""
# variables which are not sampled
@@ -257,3 +266,4 @@ class AbstractProblem(metaclass=ABCMeta):
if not is_sample:
not_sampled.append(condition_name)
return not_sampled

View File

@@ -0,0 +1,71 @@
"""Module for the ParametricProblem class"""
from abc import abstractmethod
from .abstract_problem import AbstractProblem
class InverseProblem(AbstractProblem):
"""
The class for the definition of inverse problems, i.e., problems
with unknown parameters that have to be learned during the training process
from given data.
Here's an example of a spatial inverse ODE problem, i.e., a spatial
ODE problem with an unknown parameter `alpha` as coefficient of the
derivative term.
:Example:
>>> from pina.problem import SpatialProblem, InverseProblem
>>> from pina.operators import grad
>>> from pina.equation import ParametricEquation, FixedValue
>>> from pina import Condition
>>> from pina.geometry import CartesianDomain
>>> import torch
>>>
>>> class InverseODE(SpatialProblem, InverseProblem):
>>>
>>> output_variables = ['u']
>>> spatial_domain = CartesianDomain({'x': [0, 1]})
>>> unknown_parameter_domain = CartesianDomain({'alpha': [1, 10]})
>>>
>>> def ode_equation(input_, output_, params_):
>>> u_x = grad(output_, input_, components=['u'], d=['x'])
>>> u = output_.extract(['u'])
>>> return params_.extract(['alpha']) * u_x - u
>>>
>>> def solution_data(input_, output_):
>>> x = input_.extract(['x'])
>>> solution = torch.exp(x)
>>> return output_ - solution
>>>
>>> conditions = {
>>> 'x0': Condition(CartesianDomain({'x': 0}), FixedValue(1.0)),
>>> 'D': Condition(CartesianDomain({'x': [0, 1]}), ParametricEquation(ode_equation)),
>>> 'data': Condition(CartesianDomain({'x': [0, 1]}), Equation(solution_data))
"""
@abstractmethod
def unknown_parameter_domain(self):
"""
The parameters' domain of the problem.
"""
pass
@property
def unknown_variables(self):
"""
The parameters of the problem.
"""
return self.unknown_parameter_domain.variables
@property
def unknown_parameters(self):
"""
The parameters of the problem.
"""
return self.__unknown_parameters
@unknown_parameters.setter
def unknown_parameters(self, value):
self.__unknown_parameters = value

View File

@@ -14,7 +14,7 @@ class SpatialProblem(AbstractProblem):
:Example:
>>> from pina.problem import SpatialProblem
>>> from pina.operators import grad
>>> from pina.equations import Equation, FixedValue
>>> from pina.equation import Equation, FixedValue
>>> from pina import Condition
>>> from pina.geometry import CartesianDomain
>>> import torch
@@ -33,7 +33,6 @@ class SpatialProblem(AbstractProblem):
>>> conditions = {
>>> 'x0': Condition(CartesianDomain({'x': 0, 'alpha':[1, 10]}), FixedValue(1.)),
>>> 'D': Condition(CartesianDomain({'x': [0, 1], 'alpha':[1, 10]}), Equation(ode_equation))}
"""
@abstractmethod

View File

@@ -14,7 +14,7 @@ class TimeDependentProblem(AbstractProblem):
:Example:
>>> from pina.problem import SpatialProblem, TimeDependentProblem
>>> from pina.operators import grad, laplacian
>>> from pina.equations import Equation, FixedValue
>>> from pina.equation import Equation, FixedValue
>>> from pina import Condition
>>> from pina.geometry import CartesianDomain
>>> import torch
@@ -43,7 +43,6 @@ class TimeDependentProblem(AbstractProblem):
>>> 'gamma1': Condition(CartesianDomain({'x':0, 't':[0, 1]}), FixedValue(0.)),
>>> 'gamma2': Condition(CartesianDomain({'x':3, 't':[0, 1]}), FixedValue(0.)),
>>> 'D': Condition(CartesianDomain({'x': [0, 3], 't':[0, 1]}), Equation(wave_equation))}
"""
@abstractmethod

View File

@@ -11,6 +11,7 @@ from .solver import SolverInterface
from ..label_tensor import LabelTensor
from ..utils import check_consistency
from ..loss import LossInterface
from ..problem import InverseProblem
from torch.nn.modules.loss import _Loss
torch.pi = torch.acos(torch.zeros(1)).item() * 2 # which is 3.1415927410125732
@@ -18,14 +19,14 @@ torch.pi = torch.acos(torch.zeros(1)).item() * 2 # which is 3.1415927410125732
class PINN(SolverInterface):
"""
PINN solver class. This class implements Physics Informed Neural
PINN solver class. This class implements Physics Informed Neural
Network solvers, using a user specified ``model`` to solve a specific
``problem``.
``problem``. It can be used for solving both forward and inverse problems.
.. seealso::
**Original reference**: Karniadakis, G. E., Kevrekidis, I. G., Lu, L.,
Perdikaris, P., Wang, S., & Yang, L. (2021).
**Original reference**: Karniadakis, G. E., Kevrekidis, I. G., Lu, L.,
Perdikaris, P., Wang, S., & Yang, L. (2021).
Physics-informed machine learning. Nature Reviews Physics, 3(6), 422-440.
<https://doi.org/10.1038/s42254-021-00314-5>`_.
"""
@@ -45,7 +46,7 @@ class PINN(SolverInterface):
},
):
'''
:param AbstractProblem problem: The formualation of the problem.
:param AbstractProblem problem: The formulation of the problem.
:param torch.nn.Module model: The neural network model to use.
:param torch.nn.Module loss: The loss function used as minimizer,
default :class:`torch.nn.MSELoss`.
@@ -74,12 +75,18 @@ class PINN(SolverInterface):
self._loss = loss
self._neural_net = self.models[0]
# inverse problem handling
if isinstance(self.problem, InverseProblem):
self._params = self.problem.unknown_parameters
else:
self._params = None
def forward(self, x):
"""
Forward pass implementation for the PINN
solver.
:param torch.Tensor x: Input tensor.
:param torch.Tensor x: Input tensor.
:return: PINN solution.
:rtype: torch.Tensor
"""
@@ -93,17 +100,30 @@ class PINN(SolverInterface):
:return: The optimizers and the schedulers
:rtype: tuple(list, list)
"""
# if the problem is an InverseProblem, add the unknown parameters
# to the parameters that the optimizer needs to optimize
if isinstance(self.problem, InverseProblem):
self.optimizers[0].add_param_group(
{'params': [self._params[var] for var in self.problem.unknown_variables]}
)
return self.optimizers, [self.scheduler]
def _clamp_inverse_problem_params(self):
for v in self._params:
self._params[v].data.clamp_(
self.problem.unknown_parameter_domain.range_[v][0],
self.problem.unknown_parameter_domain.range_[v][1])
def _loss_data(self, input, output):
return self.loss(self.forward(input), output)
def _loss_phys(self, samples, equation):
residual = equation.residual(samples, self.forward(samples))
try:
residual = equation.residual(samples, self.forward(samples))
except TypeError: # this occurs when the function has three inputs, i.e. inverse problem
residual = equation.residual(samples, self.forward(samples), self._params)
return self.loss(torch.zeros_like(residual, requires_grad=True), residual)
def training_step(self, batch, batch_idx):
"""
PINN solver training step.
@@ -137,15 +157,20 @@ class PINN(SolverInterface):
else:
raise ValueError("Batch size not supported")
# TODO for users this us hard to remebeber when creating a new solver, to fix in a smarter way
# TODO for users this us hard to remember when creating a new solver, to fix in a smarter way
loss = loss.as_subclass(torch.Tensor)
# add condition losses and accumulate logging for each epoch
# # add condition losses and accumulate logging for each epoch
condition_losses.append(loss * condition.data_weight)
self.log(condition_name + '_loss', float(loss),
prog_bar=True, logger=True, on_epoch=True, on_step=False)
# add to tot loss and accumulate logging for each epoch
# clamp unknown parameters of the InverseProblem to their domain ranges (if needed)
if isinstance(self.problem, InverseProblem):
self._clamp_inverse_problem_params()
# TODO Fix the bug, tot_loss is a label tensor without labels
# we need to pass it as a torch tensor to make everything work
total_loss = sum(condition_losses)
self.log('mean_loss', float(total_loss / len(condition_losses)),
prog_bar=True, logger=True, on_epoch=True, on_step=False)

9
tutorials/README.md vendored
View File

@@ -6,20 +6,21 @@ In this folder we collect useful tutorials in order to understand the principles
| Description | Tutorial |
|---------------|-----------|
Introduction to PINA for Physics Informed Neural Networks training|[[.ipynb](tutorial1/tutorial.ipynb),&#160;[.py](tutorial1/tutorial.py),&#160;[.html](http://mathlab.github.io/PINA/_rst/tutorial1/tutorial.html)]|
Building custom geometries with PINA `Location` class|[[.ipynb](tutorial1/tutorial.ipynb),&#160;[.py](tutorial1/tutorial.py),&#160;[.html](http://mathlab.github.io/PINA/_rst/tutorial1/tutorial.html)]|
Introduction to PINA for Physics Informed Neural Networks training|[[.ipynb](tutorial1/tutorial.ipynb),&#160;[.py](tutorial1/tutorial.py),&#160;[.html](http://mathlab.github.io/PINA/_rst/tutorial1/tutorial.html)]|
Building custom geometries with PINA `Location` class|[[.ipynb](tutorial1/tutorial.ipynb),&#160;[.py](tutorial1/tutorial.py),&#160;[.html](http://mathlab.github.io/PINA/_rst/tutorial1/tutorial.html)]|
## Physics Informed Neural Networks
| Description | Tutorial |
| Description | Tutorial |
|---------------|-----------|
Two dimensional Poisson problem using Extra Features Learning &nbsp; &nbsp; |[[.ipynb](tutorial2/tutorial.ipynb),&#160;[.py](tutorial2/tutorial.py),&#160;[.html](http://mathlab.github.io/PINA/_rst/tutorial2/tutorial.html)]|
Two dimensional Wave problem with hard constraint |[[.ipynb](tutorial3/tutorial.ipynb),&#160;[.py](tutorial3/tutorial.py),&#160;[.html](http://mathlab.github.io/PINA/_rst/tutorial3/tutorial.html)]|
Resolution of a 2D Poisson inverse problem |[[.ipynb](tutorial7/tutorial.ipynb),&#160;[.py](tutorial7/tutorial.py),&#160;[.html](http://mathlab.github.io/PINA/_rst/tutorial7/tutorial.html)]|
## Neural Operator Learning
| Description | Tutorial |
|---------------|-----------|
Two dimensional Darcy flow using the Fourier Neural Operator &nbsp; &nbsp; &nbsp;&nbsp; &nbsp;|[[.ipynb](tutorial5/tutorial.ipynb),&#160;[.py](tutorial5/tutorial.py),&#160;[.html](http://mathlab.github.io/PINA/_rst/tutorial5/tutorial.html)]|
Two dimensional Darcy flow using the Fourier Neural Operator &nbsp; &nbsp; &nbsp;&nbsp; &nbsp;|[[.ipynb](tutorial5/tutorial.ipynb),&#160;[.py](tutorial5/tutorial.py),&#160;[.html](http://mathlab.github.io/PINA/_rst/tutorial5/tutorial.html)]|
## Supervised Learning
| Description | Tutorial |

Binary file not shown.

BIN
tutorials/tutorial7/data/pts_0.5_0.5 vendored Normal file

Binary file not shown.

368
tutorials/tutorial7/tutorial.ipynb vendored Normal file

File diff suppressed because one or more lines are too long

197
tutorials/tutorial7/tutorial.py vendored Normal file
View File

@@ -0,0 +1,197 @@
#!/usr/bin/env python
# coding: utf-8
# # Tutorial 7: Resolution of an inverse problem
# ### Introduction to the inverse problem
# This tutorial shows how to solve an inverse Poisson problem with Physics-Informed Neural Networks. The problem definition is that of a Poisson problem with homogeneous boundary conditions and it reads:
# \begin{equation}
# \begin{cases}
# \Delta u = e^{-2(x-\mu_1)^2-2(y-\mu_2)^2} \text{ in } \Omega\, ,\\
# u = 0 \text{ on }\partial \Omega,\\
# u(\mu_1, \mu_2) = \text{ data}
# \end{cases}
# \end{equation}
# where $\Omega$ is a square domain $[-2, 2] \times [-2, 2]$, and $\partial \Omega=\Gamma_1 \cup \Gamma_2 \cup \Gamma_3 \cup \Gamma_4$ is the union of the boundaries of the domain.
#
# This kind of problem, namely the "inverse problem", has two main goals:
# - find the solution $u$ that satisfies the Poisson equation;
# - find the unknown parameters ($\mu_1$, $\mu_2$) that better fit some given data (third equation in the system above).
#
# In order to achieve both the goals we will need to define an `InverseProblem` in PINA.
# Let's start with useful imports.
# In[1]:
import matplotlib.pyplot as plt
import torch
from pytorch_lightning.callbacks import Callback
from pina.problem import SpatialProblem, InverseProblem
from pina.operators import laplacian
from pina.model import FeedForward
from pina.equation import Equation, FixedValue
from pina import Condition, Trainer
from pina.solvers import PINN
from pina.geometry import CartesianDomain
# Then, we import the pre-saved data, for ($\mu_1$, $\mu_2$)=($0.5$, $0.5$). These two values are the optimal parameters that we want to find through the neural network training. In particular, we import the `input_points`(the spatial coordinates), and the `output_points` (the corresponding $u$ values evaluated at the `input_points`).
# In[2]:
data_output = torch.load('data/pinn_solution_0.5_0.5').detach()
data_input = torch.load('data/pts_0.5_0.5')
# Moreover, let's plot also the data points and the reference solution: this is the expected output of the neural network.
# In[3]:
points = data_input.extract(['x', 'y']).detach().numpy()
truth = data_output.detach().numpy()
plt.scatter(points[:, 0], points[:, 1], c=truth, s=8)
plt.axis('equal')
plt.colorbar()
plt.show()
# ### Inverse problem definition in PINA
# Then, we initialize the Poisson problem, that is inherited from the `SpatialProblem` and from the `InverseProblem` classes. We here have to define all the variables, and the domain where our unknown parameters ($\mu_1$, $\mu_2$) belong. Notice that the laplace equation takes as inputs also the unknown variables, that will be treated as parameters that the neural network optimizes during the training process.
# In[4]:
### Define ranges of variables
x_min = -2
x_max = 2
y_min = -2
y_max = 2
class Poisson(SpatialProblem, InverseProblem):
'''
Problem definition for the Poisson equation.
'''
output_variables = ['u']
spatial_domain = CartesianDomain({'x': [x_min, x_max], 'y': [y_min, y_max]})
# define the ranges for the parameters
unknown_parameter_domain = CartesianDomain({'mu1': [-1, 1], 'mu2': [-1, 1]})
def laplace_equation(input_, output_, params_):
'''
Laplace equation with a force term.
'''
force_term = torch.exp(
- 2*(input_.extract(['x']) - params_['mu1'])**2
- 2*(input_.extract(['y']) - params_['mu2'])**2)
delta_u = laplacian(output_, input_, components=['u'], d=['x', 'y'])
return delta_u - force_term
# define the conditions for the loss (boundary conditions, equation, data)
conditions = {
'gamma1': Condition(location=CartesianDomain({'x': [x_min, x_max],
'y': y_max}),
equation=FixedValue(0.0, components=['u'])),
'gamma2': Condition(location=CartesianDomain({'x': [x_min, x_max], 'y': y_min
}),
equation=FixedValue(0.0, components=['u'])),
'gamma3': Condition(location=CartesianDomain({'x': x_max, 'y': [y_min, y_max]
}),
equation=FixedValue(0.0, components=['u'])),
'gamma4': Condition(location=CartesianDomain({'x': x_min, 'y': [y_min, y_max]
}),
equation=FixedValue(0.0, components=['u'])),
'D': Condition(location=CartesianDomain({'x': [x_min, x_max], 'y': [y_min, y_max]
}),
equation=Equation(laplace_equation)),
'data': Condition(input_points=data_input.extract(['x', 'y']), output_points=data_output)
}
problem = Poisson()
# Then, we define the model of the neural network we want to use. Here we used a model which impose hard constrains on the boundary conditions, as also done in the Wave tutorial!
# In[5]:
model = FeedForward(
layers=[20, 20, 20],
func=torch.nn.Softplus,
output_dimensions=len(problem.output_variables),
input_dimensions=len(problem.input_variables)
)
# After that, we discretize the spatial domain.
# In[6]:
problem.discretise_domain(20, 'grid', locations=['D'], variables=['x', 'y'])
problem.discretise_domain(1000, 'random', locations=['gamma1', 'gamma2',
'gamma3', 'gamma4'], variables=['x', 'y'])
# Here, we define a simple callback for the trainer. We use this callback to save the parameters predicted by the neural network during the training. The parameters are saved every 100 epochs as `torch` tensors in a specified directory (`tmp_dir` in our case).
# The goal is to read the saved parameters after training and plot their trend across the epochs.
# In[7]:
# temporary directory for saving logs of training
tmp_dir = "tmp_poisson_inverse"
class SaveParameters(Callback):
'''
Callback to save the parameters of the model every 100 epochs.
'''
def on_train_epoch_end(self, trainer, __):
if trainer.current_epoch % 100 == 99:
torch.save(trainer.solver.problem.unknown_parameters, '{}/parameters_epoch{}'.format(tmp_dir, trainer.current_epoch))
# Then, we define the `PINN` object and train the solver using the `Trainer`.
# In[8]:
### train the problem with PINN
max_epochs = 5000
pinn = PINN(problem, model, optimizer_kwargs={'lr':0.005})
# define the trainer for the solver
trainer = Trainer(solver=pinn, accelerator='cpu', max_epochs=max_epochs,
default_root_dir=tmp_dir, callbacks=[SaveParameters()])
trainer.train()
# One can now see how the parameters vary during the training by reading the saved solution and plotting them. The plot shows that the parameters stabilize to their true value before reaching the epoch $1000$!
# In[9]:
epochs_saved = range(99, max_epochs, 100)
parameters = torch.empty((int(max_epochs/100), 2))
for i, epoch in enumerate(epochs_saved):
params_torch = torch.load('{}/parameters_epoch{}'.format(tmp_dir, epoch))
for e, var in enumerate(pinn.problem.unknown_variables):
parameters[i, e] = params_torch[var].data
# Plot parameters
plt.close()
plt.plot(epochs_saved, parameters[:, 0], label='mu1', marker='o')
plt.plot(epochs_saved, parameters[:, 1], label='mu2', marker='s')
plt.ylim(-1, 1)
plt.grid()
plt.legend()
plt.xlabel('Epoch')
plt.ylabel('Parameter value')
plt.show()