Inverse problem implementation (#177)

* inverse problem implementation

* add tutorial7 for inverse Poisson problem

* fix doc in equation, equation_interface, system_equation

---------

Co-authored-by: Dario Coscia <dariocoscia@dhcp-015.eduroam.sissa.it>
This commit is contained in:
Anna Ivagnes
2023-11-15 14:02:16 +01:00
committed by Nicola Demo
parent a9f14ac323
commit 0b7a307cf1
21 changed files with 967 additions and 40 deletions

View File

@@ -3,9 +3,11 @@ __all__ = [
'SpatialProblem',
'TimeDependentProblem',
'ParametricProblem',
'InverseProblem',
]
from .abstract_problem import AbstractProblem
from .spatial_problem import SpatialProblem
from .timedep_problem import TimeDependentProblem
from .parametric_problem import ParametricProblem
from .inverse_problem import InverseProblem

View File

@@ -109,6 +109,14 @@ class AbstractProblem(metaclass=ABCMeta):
samples = condition.input_points
self.input_pts[condition_name] = samples
self._have_sampled_points[condition_name] = True
if hasattr(self, 'unknown_parameter_domain'):
# initialize the unknown parameters of the inverse problem given
# the domain the user gives
self.unknown_parameters = {}
for i, var in enumerate(self.unknown_variables):
range_var = self.unknown_parameter_domain.range_[var]
tensor_var = torch.rand(1, requires_grad=True) * range_var[1] + range_var[0]
self.unknown_parameters[var] = torch.nn.Parameter(tensor_var)
def discretise_domain(self,
n,
@@ -203,6 +211,7 @@ class AbstractProblem(metaclass=ABCMeta):
self.input_variables):
self._have_sampled_points[location] = True
def add_points(self, new_points):
"""
Adding points to the already sampled points.
@@ -237,7 +246,7 @@ class AbstractProblem(metaclass=ABCMeta):
@property
def have_sampled_points(self):
"""
Check if all points for
Check if all points for
``Location`` are sampled.
"""
return all(self._have_sampled_points.values())
@@ -245,7 +254,7 @@ class AbstractProblem(metaclass=ABCMeta):
@property
def not_sampled_points(self):
"""
Check which points are
Check which points are
not sampled.
"""
# variables which are not sampled
@@ -257,3 +266,4 @@ class AbstractProblem(metaclass=ABCMeta):
if not is_sample:
not_sampled.append(condition_name)
return not_sampled

View File

@@ -0,0 +1,71 @@
"""Module for the ParametricProblem class"""
from abc import abstractmethod
from .abstract_problem import AbstractProblem
class InverseProblem(AbstractProblem):
"""
The class for the definition of inverse problems, i.e., problems
with unknown parameters that have to be learned during the training process
from given data.
Here's an example of a spatial inverse ODE problem, i.e., a spatial
ODE problem with an unknown parameter `alpha` as coefficient of the
derivative term.
:Example:
>>> from pina.problem import SpatialProblem, InverseProblem
>>> from pina.operators import grad
>>> from pina.equation import ParametricEquation, FixedValue
>>> from pina import Condition
>>> from pina.geometry import CartesianDomain
>>> import torch
>>>
>>> class InverseODE(SpatialProblem, InverseProblem):
>>>
>>> output_variables = ['u']
>>> spatial_domain = CartesianDomain({'x': [0, 1]})
>>> unknown_parameter_domain = CartesianDomain({'alpha': [1, 10]})
>>>
>>> def ode_equation(input_, output_, params_):
>>> u_x = grad(output_, input_, components=['u'], d=['x'])
>>> u = output_.extract(['u'])
>>> return params_.extract(['alpha']) * u_x - u
>>>
>>> def solution_data(input_, output_):
>>> x = input_.extract(['x'])
>>> solution = torch.exp(x)
>>> return output_ - solution
>>>
>>> conditions = {
>>> 'x0': Condition(CartesianDomain({'x': 0}), FixedValue(1.0)),
>>> 'D': Condition(CartesianDomain({'x': [0, 1]}), ParametricEquation(ode_equation)),
>>> 'data': Condition(CartesianDomain({'x': [0, 1]}), Equation(solution_data))
"""
@abstractmethod
def unknown_parameter_domain(self):
"""
The parameters' domain of the problem.
"""
pass
@property
def unknown_variables(self):
"""
The parameters of the problem.
"""
return self.unknown_parameter_domain.variables
@property
def unknown_parameters(self):
"""
The parameters of the problem.
"""
return self.__unknown_parameters
@unknown_parameters.setter
def unknown_parameters(self, value):
self.__unknown_parameters = value

View File

@@ -14,7 +14,7 @@ class SpatialProblem(AbstractProblem):
:Example:
>>> from pina.problem import SpatialProblem
>>> from pina.operators import grad
>>> from pina.equations import Equation, FixedValue
>>> from pina.equation import Equation, FixedValue
>>> from pina import Condition
>>> from pina.geometry import CartesianDomain
>>> import torch
@@ -33,7 +33,6 @@ class SpatialProblem(AbstractProblem):
>>> conditions = {
>>> 'x0': Condition(CartesianDomain({'x': 0, 'alpha':[1, 10]}), FixedValue(1.)),
>>> 'D': Condition(CartesianDomain({'x': [0, 1], 'alpha':[1, 10]}), Equation(ode_equation))}
"""
@abstractmethod

View File

@@ -14,7 +14,7 @@ class TimeDependentProblem(AbstractProblem):
:Example:
>>> from pina.problem import SpatialProblem, TimeDependentProblem
>>> from pina.operators import grad, laplacian
>>> from pina.equations import Equation, FixedValue
>>> from pina.equation import Equation, FixedValue
>>> from pina import Condition
>>> from pina.geometry import CartesianDomain
>>> import torch
@@ -43,7 +43,6 @@ class TimeDependentProblem(AbstractProblem):
>>> 'gamma1': Condition(CartesianDomain({'x':0, 't':[0, 1]}), FixedValue(0.)),
>>> 'gamma2': Condition(CartesianDomain({'x':3, 't':[0, 1]}), FixedValue(0.)),
>>> 'D': Condition(CartesianDomain({'x': [0, 3], 't':[0, 1]}), Equation(wave_equation))}
"""
@abstractmethod