Inverse problem implementation (#177)

* inverse problem implementation

* add tutorial7 for inverse Poisson problem

* fix doc in equation, equation_interface, system_equation

---------

Co-authored-by: Dario Coscia <dariocoscia@dhcp-015.eduroam.sissa.it>
This commit is contained in:
Anna Ivagnes
2023-11-15 14:02:16 +01:00
committed by Nicola Demo
parent a9f14ac323
commit 0b7a307cf1
21 changed files with 967 additions and 40 deletions

View File

@@ -11,6 +11,7 @@ from .solver import SolverInterface
from ..label_tensor import LabelTensor
from ..utils import check_consistency
from ..loss import LossInterface
from ..problem import InverseProblem
from torch.nn.modules.loss import _Loss
torch.pi = torch.acos(torch.zeros(1)).item() * 2 # which is 3.1415927410125732
@@ -18,14 +19,14 @@ torch.pi = torch.acos(torch.zeros(1)).item() * 2 # which is 3.1415927410125732
class PINN(SolverInterface):
"""
PINN solver class. This class implements Physics Informed Neural
PINN solver class. This class implements Physics Informed Neural
Network solvers, using a user specified ``model`` to solve a specific
``problem``.
``problem``. It can be used for solving both forward and inverse problems.
.. seealso::
**Original reference**: Karniadakis, G. E., Kevrekidis, I. G., Lu, L.,
Perdikaris, P., Wang, S., & Yang, L. (2021).
**Original reference**: Karniadakis, G. E., Kevrekidis, I. G., Lu, L.,
Perdikaris, P., Wang, S., & Yang, L. (2021).
Physics-informed machine learning. Nature Reviews Physics, 3(6), 422-440.
<https://doi.org/10.1038/s42254-021-00314-5>`_.
"""
@@ -45,7 +46,7 @@ class PINN(SolverInterface):
},
):
'''
:param AbstractProblem problem: The formualation of the problem.
:param AbstractProblem problem: The formulation of the problem.
:param torch.nn.Module model: The neural network model to use.
:param torch.nn.Module loss: The loss function used as minimizer,
default :class:`torch.nn.MSELoss`.
@@ -74,12 +75,18 @@ class PINN(SolverInterface):
self._loss = loss
self._neural_net = self.models[0]
# inverse problem handling
if isinstance(self.problem, InverseProblem):
self._params = self.problem.unknown_parameters
else:
self._params = None
def forward(self, x):
"""
Forward pass implementation for the PINN
solver.
:param torch.Tensor x: Input tensor.
:param torch.Tensor x: Input tensor.
:return: PINN solution.
:rtype: torch.Tensor
"""
@@ -93,17 +100,30 @@ class PINN(SolverInterface):
:return: The optimizers and the schedulers
:rtype: tuple(list, list)
"""
# if the problem is an InverseProblem, add the unknown parameters
# to the parameters that the optimizer needs to optimize
if isinstance(self.problem, InverseProblem):
self.optimizers[0].add_param_group(
{'params': [self._params[var] for var in self.problem.unknown_variables]}
)
return self.optimizers, [self.scheduler]
def _clamp_inverse_problem_params(self):
for v in self._params:
self._params[v].data.clamp_(
self.problem.unknown_parameter_domain.range_[v][0],
self.problem.unknown_parameter_domain.range_[v][1])
def _loss_data(self, input, output):
return self.loss(self.forward(input), output)
def _loss_phys(self, samples, equation):
residual = equation.residual(samples, self.forward(samples))
try:
residual = equation.residual(samples, self.forward(samples))
except TypeError: # this occurs when the function has three inputs, i.e. inverse problem
residual = equation.residual(samples, self.forward(samples), self._params)
return self.loss(torch.zeros_like(residual, requires_grad=True), residual)
def training_step(self, batch, batch_idx):
"""
PINN solver training step.
@@ -137,15 +157,20 @@ class PINN(SolverInterface):
else:
raise ValueError("Batch size not supported")
# TODO for users this us hard to remebeber when creating a new solver, to fix in a smarter way
# TODO for users this us hard to remember when creating a new solver, to fix in a smarter way
loss = loss.as_subclass(torch.Tensor)
# add condition losses and accumulate logging for each epoch
# # add condition losses and accumulate logging for each epoch
condition_losses.append(loss * condition.data_weight)
self.log(condition_name + '_loss', float(loss),
prog_bar=True, logger=True, on_epoch=True, on_step=False)
# add to tot loss and accumulate logging for each epoch
# clamp unknown parameters of the InverseProblem to their domain ranges (if needed)
if isinstance(self.problem, InverseProblem):
self._clamp_inverse_problem_params()
# TODO Fix the bug, tot_loss is a label tensor without labels
# we need to pass it as a torch tensor to make everything work
total_loss = sum(condition_losses)
self.log('mean_loss', float(total_loss / len(condition_losses)),
prog_bar=True, logger=True, on_epoch=True, on_step=False)