minor fix
This commit is contained in:
committed by
Nicola Demo
parent
4d1187898f
commit
1936133ad5
7
pina/callbacks/__init__.py
Normal file
7
pina/callbacks/__init__.py
Normal file
@@ -0,0 +1,7 @@
|
||||
__all__ = [
|
||||
'SwitchOptimizer',
|
||||
'R3Refinement',
|
||||
]
|
||||
|
||||
from .optimizer_callbacks import SwitchOptimizer
|
||||
from .adaptive_refinment_callbacks import R3Refinement
|
||||
@@ -2,65 +2,9 @@
|
||||
|
||||
from lightning.pytorch.callbacks import Callback
|
||||
import torch
|
||||
from .utils import check_consistency
|
||||
from ..utils import check_consistency
|
||||
|
||||
|
||||
class SwitchOptimizer(Callback):
|
||||
"""
|
||||
PINA implementation of a Lightining Callback to switch
|
||||
optimizer during training. The rouutine can be used to
|
||||
try multiple optimizers during the training, without the
|
||||
need to stop training.
|
||||
"""
|
||||
def __init__(self, new_optimizers, new_optimizers_kargs, epoch_switch):
|
||||
"""
|
||||
SwitchOptimizer is a routine for switching optimizer during training.
|
||||
|
||||
:param torch.optim.Optimizer | list new_optimizers: The model optimizers to
|
||||
switch to. It must be a list of :class:`torch.optim.Optimizer` or list of
|
||||
:class:`torch.optim.Optimizer` for multiple model solvers.
|
||||
:param dict| list new_optimizers: The model optimizers keyword arguments to
|
||||
switch use. It must be a dict or list of dict for multiple optimizers.
|
||||
:param int epoch_switch: Epoch for switching optimizer.
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
# check type consistency
|
||||
check_consistency(new_optimizers, torch.optim.Optimizer, subclass=True)
|
||||
check_consistency(new_optimizers_kargs, dict)
|
||||
check_consistency(epoch_switch, int)
|
||||
|
||||
if epoch_switch < 1:
|
||||
raise ValueError('epoch_switch must be greater than one.')
|
||||
|
||||
if not isinstance(new_optimizers, list):
|
||||
optimizers = [new_optimizers]
|
||||
optimizers_kwargs = [new_optimizers_kargs]
|
||||
len_optimizer = len(optimizers)
|
||||
len_optimizer_kwargs = len(optimizers_kwargs)
|
||||
|
||||
if len_optimizer_kwargs != len_optimizer:
|
||||
raise ValueError('You must define one dictionary of keyword'
|
||||
' arguments for each optimizers.'
|
||||
f'Got {len_optimizer} optimizers, and'
|
||||
f' {len_optimizer_kwargs} dicitionaries')
|
||||
|
||||
# save new optimizers
|
||||
self._new_optimizers = optimizers
|
||||
self._new_optimizers_kwargs = optimizers_kwargs
|
||||
self._epoch_switch = epoch_switch
|
||||
|
||||
def on_train_epoch_start(self, trainer, __):
|
||||
if trainer.current_epoch == self._epoch_switch:
|
||||
optims = []
|
||||
for idx, (optim, optim_kwargs) in enumerate(
|
||||
zip(self._new_optimizers,
|
||||
self._new_optimizers_kwargs)
|
||||
):
|
||||
optims.append(optim(trainer._model.models[idx].parameters(), **optim_kwargs))
|
||||
|
||||
trainer.optimizers = optims
|
||||
|
||||
|
||||
class R3Refinement(Callback):
|
||||
"""
|
||||
62
pina/callbacks/optimizer_callbacks.py
Normal file
62
pina/callbacks/optimizer_callbacks.py
Normal file
@@ -0,0 +1,62 @@
|
||||
'''PINA Callbacks Implementations'''
|
||||
|
||||
from lightning.pytorch.callbacks import Callback
|
||||
import torch
|
||||
from ..utils import check_consistency
|
||||
|
||||
|
||||
class SwitchOptimizer(Callback):
|
||||
"""
|
||||
PINA implementation of a Lightining Callback to switch
|
||||
optimizer during training. The rouutine can be used to
|
||||
try multiple optimizers during the training, without the
|
||||
need to stop training.
|
||||
"""
|
||||
def __init__(self, new_optimizers, new_optimizers_kwargs, epoch_switch):
|
||||
"""
|
||||
SwitchOptimizer is a routine for switching optimizer during training.
|
||||
|
||||
:param torch.optim.Optimizer | list new_optimizers: The model optimizers to
|
||||
switch to. It must be a list of :class:`torch.optim.Optimizer` or list of
|
||||
:class:`torch.optim.Optimizer` for multiple model solvers.
|
||||
:param dict| list new_optimizers: The model optimizers keyword arguments to
|
||||
switch use. It must be a dict or list of dict for multiple optimizers.
|
||||
:param int epoch_switch: Epoch for switching optimizer.
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
# check type consistency
|
||||
check_consistency(new_optimizers, torch.optim.Optimizer, subclass=True)
|
||||
check_consistency(new_optimizers_kwargs, dict)
|
||||
check_consistency(epoch_switch, int)
|
||||
|
||||
if epoch_switch < 1:
|
||||
raise ValueError('epoch_switch must be greater than one.')
|
||||
|
||||
if not isinstance(new_optimizers, list):
|
||||
new_optimizers = [new_optimizers]
|
||||
new_optimizers_kwargs = [new_optimizers_kwargs]
|
||||
len_optimizer = len(new_optimizers)
|
||||
len_optimizer_kwargs = len(new_optimizers_kwargs)
|
||||
|
||||
if len_optimizer_kwargs != len_optimizer:
|
||||
raise ValueError('You must define one dictionary of keyword'
|
||||
' arguments for each optimizers.'
|
||||
f' Got {len_optimizer} optimizers, and'
|
||||
f' {len_optimizer_kwargs} dicitionaries')
|
||||
|
||||
# save new optimizers
|
||||
self._new_optimizers = new_optimizers
|
||||
self._new_optimizers_kwargs = new_optimizers_kwargs
|
||||
self._epoch_switch = epoch_switch
|
||||
|
||||
def on_train_epoch_start(self, trainer, __):
|
||||
if trainer.current_epoch == self._epoch_switch:
|
||||
optims = []
|
||||
for idx, (optim, optim_kwargs) in enumerate(
|
||||
zip(self._new_optimizers,
|
||||
self._new_optimizers_kwargs)
|
||||
):
|
||||
optims.append(optim(trainer._model.models[idx].parameters(), **optim_kwargs))
|
||||
|
||||
trainer.optimizers = optims
|
||||
71
tests/test_callbacks/test_adaptive_refinment_callbacks.py
Normal file
71
tests/test_callbacks/test_adaptive_refinment_callbacks.py
Normal file
@@ -0,0 +1,71 @@
|
||||
|
||||
|
||||
from pina.callbacks import R3Refinement
|
||||
import torch
|
||||
import pytest
|
||||
|
||||
from pina.problem import SpatialProblem
|
||||
from pina.operators import laplacian
|
||||
from pina.geometry import CartesianDomain
|
||||
from pina import Condition, LabelTensor, PINN
|
||||
from pina.trainer import Trainer
|
||||
from pina.model import FeedForward
|
||||
from pina.equation.equation import Equation
|
||||
from pina.equation.equation_factory import FixedValue
|
||||
|
||||
|
||||
def laplace_equation(input_, output_):
|
||||
force_term = (torch.sin(input_.extract(['x'])*torch.pi) *
|
||||
torch.sin(input_.extract(['y'])*torch.pi))
|
||||
delta_u = laplacian(output_.extract(['u']), input_)
|
||||
return delta_u - force_term
|
||||
|
||||
my_laplace = Equation(laplace_equation)
|
||||
in_ = LabelTensor(torch.tensor([[0., 1.]]), ['x', 'y'])
|
||||
out_ = LabelTensor(torch.tensor([[0.]]), ['u'])
|
||||
|
||||
class Poisson(SpatialProblem):
|
||||
output_variables = ['u']
|
||||
spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})
|
||||
|
||||
conditions = {
|
||||
'gamma1': Condition(
|
||||
location=CartesianDomain({'x': [0, 1], 'y': 1}),
|
||||
equation=FixedValue(0.0)),
|
||||
'gamma2': Condition(
|
||||
location=CartesianDomain({'x': [0, 1], 'y': 0}),
|
||||
equation=FixedValue(0.0)),
|
||||
'gamma3': Condition(
|
||||
location=CartesianDomain({'x': 1, 'y': [0, 1]}),
|
||||
equation=FixedValue(0.0)),
|
||||
'gamma4': Condition(
|
||||
location=CartesianDomain({'x': 0, 'y': [0, 1]}),
|
||||
equation=FixedValue(0.0)),
|
||||
'D': Condition(
|
||||
input_points=LabelTensor(torch.rand(size=(100, 2)), ['x', 'y']),
|
||||
equation=my_laplace),
|
||||
'data': Condition(
|
||||
input_points=in_,
|
||||
output_points=out_)
|
||||
}
|
||||
|
||||
|
||||
# make the problem
|
||||
poisson_problem = Poisson()
|
||||
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
n = 10
|
||||
poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
|
||||
model = FeedForward(len(poisson_problem.input_variables),len(poisson_problem.output_variables))
|
||||
|
||||
# make the solver
|
||||
solver = PINN(problem=poisson_problem, model=model)
|
||||
|
||||
|
||||
def test_r3constructor():
|
||||
R3Refinement(sample_every=10)
|
||||
|
||||
def test_r3refinment_routine():
|
||||
# make the trainer
|
||||
trainer = Trainer(solver=solver, callbacks=[R3Refinement(sample_every=1)], max_epochs=5)
|
||||
trainer.train()
|
||||
|
||||
81
tests/test_callbacks/test_optimizer_callbacks.py
Normal file
81
tests/test_callbacks/test_optimizer_callbacks.py
Normal file
@@ -0,0 +1,81 @@
|
||||
|
||||
|
||||
from pina.callbacks import SwitchOptimizer
|
||||
import torch
|
||||
import pytest
|
||||
|
||||
from pina.problem import SpatialProblem
|
||||
from pina.operators import laplacian
|
||||
from pina.geometry import CartesianDomain
|
||||
from pina import Condition, LabelTensor, PINN
|
||||
from pina.trainer import Trainer
|
||||
from pina.model import FeedForward
|
||||
from pina.equation.equation import Equation
|
||||
from pina.equation.equation_factory import FixedValue
|
||||
|
||||
|
||||
def laplace_equation(input_, output_):
|
||||
force_term = (torch.sin(input_.extract(['x'])*torch.pi) *
|
||||
torch.sin(input_.extract(['y'])*torch.pi))
|
||||
delta_u = laplacian(output_.extract(['u']), input_)
|
||||
return delta_u - force_term
|
||||
|
||||
my_laplace = Equation(laplace_equation)
|
||||
in_ = LabelTensor(torch.tensor([[0., 1.]]), ['x', 'y'])
|
||||
out_ = LabelTensor(torch.tensor([[0.]]), ['u'])
|
||||
|
||||
class Poisson(SpatialProblem):
|
||||
output_variables = ['u']
|
||||
spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})
|
||||
|
||||
conditions = {
|
||||
'gamma1': Condition(
|
||||
location=CartesianDomain({'x': [0, 1], 'y': 1}),
|
||||
equation=FixedValue(0.0)),
|
||||
'gamma2': Condition(
|
||||
location=CartesianDomain({'x': [0, 1], 'y': 0}),
|
||||
equation=FixedValue(0.0)),
|
||||
'gamma3': Condition(
|
||||
location=CartesianDomain({'x': 1, 'y': [0, 1]}),
|
||||
equation=FixedValue(0.0)),
|
||||
'gamma4': Condition(
|
||||
location=CartesianDomain({'x': 0, 'y': [0, 1]}),
|
||||
equation=FixedValue(0.0)),
|
||||
'D': Condition(
|
||||
input_points=LabelTensor(torch.rand(size=(100, 2)), ['x', 'y']),
|
||||
equation=my_laplace),
|
||||
'data': Condition(
|
||||
input_points=in_,
|
||||
output_points=out_)
|
||||
}
|
||||
|
||||
|
||||
# make the problem
|
||||
poisson_problem = Poisson()
|
||||
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
n = 10
|
||||
poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
|
||||
model = FeedForward(len(poisson_problem.input_variables),len(poisson_problem.output_variables))
|
||||
|
||||
# make the solver
|
||||
solver = PINN(problem=poisson_problem, model=model)
|
||||
|
||||
|
||||
def test_switch_optimizer_constructor():
|
||||
SwitchOptimizer(new_optimizers=torch.optim.Adam,
|
||||
new_optimizers_kwargs={'lr':0.01},
|
||||
epoch_switch=10)
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
SwitchOptimizer(new_optimizers=[torch.optim.Adam, torch.optim.Adam],
|
||||
new_optimizers_kwargs=[{'lr':0.01}],
|
||||
epoch_switch=10)
|
||||
|
||||
|
||||
def test_switch_optimizer_routine():
|
||||
# make the trainer
|
||||
trainer = Trainer(solver=solver, callbacks=[SwitchOptimizer(new_optimizers=torch.optim.LBFGS,
|
||||
new_optimizers_kwargs={'lr':0.01},
|
||||
epoch_switch=3)], max_epochs=5)
|
||||
trainer.train()
|
||||
|
||||
Reference in New Issue
Block a user