Fix SupervisedSolver GPU bug and implement GraphSolver (#346)
* Fix some bugs * Solve bug with GPU and model_summary parameters in SupervisedSolver class * Implement GraphSolver class * Fix Tutorial 5
This commit is contained in:
committed by
Nicola Demo
parent
30f865d912
commit
2be57944ba
64
tutorials/tutorial5/tutorial.py
vendored
64
tutorials/tutorial5/tutorial.py
vendored
@@ -48,24 +48,28 @@ plt.style.use('tableau-colorblind10')
|
||||
# Specifically, $u$ is the flow pressure, $k$ is the permeability field and $f$ is the forcing function. The Darcy flow can parameterize a variety of systems including flow through porous media, elastic materials and heat conduction. Here you will define the domain as a 2D unit square Dirichlet boundary conditions. The dataset is taken from the authors original reference.
|
||||
#
|
||||
|
||||
# In[12]:
|
||||
# In[2]:
|
||||
|
||||
|
||||
# download the dataset
|
||||
data = io.loadmat("Data_Darcy.mat")
|
||||
|
||||
# extract data (we use only 100 data for train)
|
||||
k_train = LabelTensor(torch.tensor(data['k_train'], dtype=torch.float).unsqueeze(-1), ['u0'])
|
||||
u_train = LabelTensor(torch.tensor(data['u_train'], dtype=torch.float).unsqueeze(-1), ['u'])
|
||||
k_test = LabelTensor(torch.tensor(data['k_test'], dtype=torch.float).unsqueeze(-1), ['u0'])
|
||||
u_test= LabelTensor(torch.tensor(data['u_test'], dtype=torch.float).unsqueeze(-1), ['u'])
|
||||
k_train = LabelTensor(torch.tensor(data['k_train'], dtype=torch.float).unsqueeze(-1),
|
||||
labels={3:{'dof': ['u0'], 'name': 'k_train'}})
|
||||
u_train = LabelTensor(torch.tensor(data['u_train'], dtype=torch.float).unsqueeze(-1),
|
||||
labels={3:{'dof': ['u'], 'name': 'u_train'}})
|
||||
k_test = LabelTensor(torch.tensor(data['k_test'], dtype=torch.float).unsqueeze(-1),
|
||||
labels={3:{'dof': ['u0'], 'name': 'k_test'}})
|
||||
u_test= LabelTensor(torch.tensor(data['u_test'], dtype=torch.float).unsqueeze(-1),
|
||||
labels={3:{'dof': ['u'], 'name': 'u_test'}})
|
||||
x = torch.tensor(data['x'], dtype=torch.float)[0]
|
||||
y = torch.tensor(data['y'], dtype=torch.float)[0]
|
||||
|
||||
|
||||
# Let's visualize some data
|
||||
|
||||
# In[13]:
|
||||
# In[3]:
|
||||
|
||||
|
||||
plt.subplot(1, 2, 1)
|
||||
@@ -77,15 +81,24 @@ plt.imshow(u_train.squeeze(-1)[0])
|
||||
plt.show()
|
||||
|
||||
|
||||
# In[4]:
|
||||
|
||||
|
||||
u_train.labels[3]['dof']
|
||||
|
||||
|
||||
# We now create the neural operator class. It is a very simple class, inheriting from `AbstractProblem`.
|
||||
|
||||
# In[17]:
|
||||
# In[5]:
|
||||
|
||||
|
||||
class NeuralOperatorSolver(AbstractProblem):
|
||||
input_variables = k_train.labels
|
||||
output_variables = u_train.labels
|
||||
conditions = {'data' : Condition(input_points=k_train,
|
||||
input_variables = k_train.labels[3]['dof']
|
||||
output_variables = u_train.labels[3]['dof']
|
||||
domains = {
|
||||
'pts': k_train
|
||||
}
|
||||
conditions = {'data' : Condition(domain='pts',
|
||||
output_points=u_train)}
|
||||
|
||||
# make problem
|
||||
@@ -96,7 +109,7 @@ problem = NeuralOperatorSolver()
|
||||
#
|
||||
# We will first solve the problem using a Feedforward neural network. We will use the `SupervisedSolver` for solving the problem, since we are training using supervised learning.
|
||||
|
||||
# In[18]:
|
||||
# In[6]:
|
||||
|
||||
|
||||
# make model
|
||||
@@ -107,25 +120,26 @@ model = FeedForward(input_dimensions=1, output_dimensions=1)
|
||||
solver = SupervisedSolver(problem=problem, model=model)
|
||||
|
||||
# make the trainer and train
|
||||
trainer = Trainer(solver=solver, max_epochs=10, accelerator='cpu', enable_model_summary=False, batch_size=10) # we train on CPU and avoid model summary at beginning of training (optional)
|
||||
trainer = Trainer(solver=solver, max_epochs=10, accelerator='cpu', enable_model_summary=False, batch_size=10)
|
||||
# We train on CPU and avoid model summary at the beginning of training (optional)
|
||||
trainer.train()
|
||||
|
||||
|
||||
# The final loss is pretty high... We can calculate the error by importing `LpLoss`.
|
||||
|
||||
# In[19]:
|
||||
# In[7]:
|
||||
|
||||
|
||||
from pina.loss.loss_interface import LpLoss
|
||||
from pina.loss import LpLoss
|
||||
|
||||
# make the metric
|
||||
metric_err = LpLoss(relative=True)
|
||||
|
||||
|
||||
err = float(metric_err(u_train.squeeze(-1), solver.neural_net(k_train).squeeze(-1)).mean())*100
|
||||
model = solver.models[0]
|
||||
err = float(metric_err(u_train.squeeze(-1), model(k_train).squeeze(-1)).mean())*100
|
||||
print(f'Final error training {err:.2f}%')
|
||||
|
||||
err = float(metric_err(u_test.squeeze(-1), solver.neural_net(k_test).squeeze(-1)).mean())*100
|
||||
err = float(metric_err(u_test.squeeze(-1), model(k_test).squeeze(-1)).mean())*100
|
||||
print(f'Final error testing {err:.2f}%')
|
||||
|
||||
|
||||
@@ -133,7 +147,7 @@ print(f'Final error testing {err:.2f}%')
|
||||
#
|
||||
# We will now move to solve the problem using a FNO. Since we are learning operator this approach is better suited, as we shall see.
|
||||
|
||||
# In[24]:
|
||||
# In[8]:
|
||||
|
||||
|
||||
# make model
|
||||
@@ -157,13 +171,15 @@ trainer.train()
|
||||
|
||||
# We can clearly see that the final loss is lower. Let's see in testing.. Notice that the number of parameters is way higher than a `FeedForward` network. We suggest to use GPU or TPU for a speed up in training, when many data samples are used.
|
||||
|
||||
# In[25]:
|
||||
# In[9]:
|
||||
|
||||
|
||||
err = float(metric_err(u_train.squeeze(-1), solver.neural_net(k_train).squeeze(-1)).mean())*100
|
||||
model = solver.models[0]
|
||||
|
||||
err = float(metric_err(u_train.squeeze(-1), model(k_train).squeeze(-1)).mean())*100
|
||||
print(f'Final error training {err:.2f}%')
|
||||
|
||||
err = float(metric_err(u_test.squeeze(-1), solver.neural_net(k_test).squeeze(-1)).mean())*100
|
||||
err = float(metric_err(u_test.squeeze(-1), model(k_test).squeeze(-1)).mean())*100
|
||||
print(f'Final error testing {err:.2f}%')
|
||||
|
||||
|
||||
@@ -172,3 +188,9 @@ print(f'Final error testing {err:.2f}%')
|
||||
# ## What's next?
|
||||
#
|
||||
# We have made a very simple example on how to use the `FNO` for learning neural operator. Currently in **PINA** we implement 1D/2D/3D cases. We suggest to extend the tutorial using more complex problems and train for longer, to see the full potential of neural operators.
|
||||
|
||||
# In[ ]:
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user