committed by
Nicola Demo
parent
f0d68b34c7
commit
30f865d912
@@ -49,11 +49,19 @@ class Stokes(SpatialProblem):
|
||||
value = 0.0
|
||||
return output_.extract(['ux', 'uy']) - value
|
||||
|
||||
domains = {
|
||||
'gamma_top': CartesianDomain({'x': [-2, 2], 'y': 1}),
|
||||
'gamma_bot': CartesianDomain({'x': [-2, 2], 'y': -1}),
|
||||
'gamma_out': CartesianDomain({'x': 2, 'y': [-1, 1]}),
|
||||
'gamma_in': CartesianDomain({'x': -2, 'y': [-1, 1]}),
|
||||
'D': CartesianDomain({'x': [-2, 2], 'y': [-1, 1]})
|
||||
}
|
||||
|
||||
# problem condition statement
|
||||
conditions = {
|
||||
'gamma_top': Condition(location=CartesianDomain({'x': [-2, 2], 'y': 1}), equation=Equation(wall)),
|
||||
'gamma_bot': Condition(location=CartesianDomain({'x': [-2, 2], 'y': -1}), equation=Equation(wall)),
|
||||
'gamma_out': Condition(location=CartesianDomain({'x': 2, 'y': [-1, 1]}), equation=Equation(outlet)),
|
||||
'gamma_in': Condition(location=CartesianDomain({'x': -2, 'y': [-1, 1]}), equation=Equation(inlet)),
|
||||
'D': Condition(location=CartesianDomain({'x': [-2, 2], 'y': [-1, 1]}), equation=SystemEquation([momentum, continuity]))
|
||||
'gamma_top': Condition(domain='gamma_top', equation=Equation(wall)),
|
||||
'gamma_bot': Condition(domain='gamma_bot', equation=Equation(wall)),
|
||||
'gamma_out': Condition(domain='gamma_out', equation=Equation(outlet)),
|
||||
'gamma_in': Condition(domain='gamma_in', equation=Equation(inlet)),
|
||||
'D': Condition(domain='D', equation=SystemEquation([momentum, continuity]))
|
||||
}
|
||||
|
||||
@@ -17,8 +17,8 @@ if __name__ == "__main__":
|
||||
|
||||
# create problem and discretise domain
|
||||
stokes_problem = Stokes()
|
||||
stokes_problem.discretise_domain(n=1000, locations=['gamma_top', 'gamma_bot', 'gamma_in', 'gamma_out'])
|
||||
stokes_problem.discretise_domain(n=2000, locations=['D'])
|
||||
stokes_problem.discretise_domain(n=1000, domains=['gamma_top', 'gamma_bot', 'gamma_in', 'gamma_out'])
|
||||
stokes_problem.discretise_domain(n=2000, domains=['D'])
|
||||
|
||||
# make the model
|
||||
model = FeedForward(
|
||||
|
||||
@@ -84,14 +84,15 @@ class Condition:
|
||||
return DomainEquationCondition(**kwargs)
|
||||
else:
|
||||
raise ValueError(f"Invalid keyword arguments {kwargs.keys()}.")
|
||||
|
||||
# TODO: remove, not used anymore
|
||||
'''
|
||||
if (
|
||||
sorted(kwargs.keys()) != sorted(["input_points", "output_points"])
|
||||
and sorted(kwargs.keys()) != sorted(["location", "equation"])
|
||||
and sorted(kwargs.keys()) != sorted(["input_points", "equation"])
|
||||
):
|
||||
raise ValueError(f"Invalid keyword arguments {kwargs.keys()}.")
|
||||
|
||||
# TODO: remove, not used anymore
|
||||
if not self._dictvalue_isinstance(kwargs, "input_points", LabelTensor):
|
||||
raise TypeError("`input_points` must be a torch.Tensor.")
|
||||
if not self._dictvalue_isinstance(kwargs, "output_points", LabelTensor):
|
||||
@@ -103,3 +104,4 @@ class Condition:
|
||||
|
||||
for key, value in kwargs.items():
|
||||
setattr(self, key, value)
|
||||
'''
|
||||
@@ -15,4 +15,7 @@ class ConditionInterface(metaclass=ABCMeta):
|
||||
:param model: The model to evaluate the condition.
|
||||
:return: The residual of the condition.
|
||||
"""
|
||||
pass
|
||||
pass
|
||||
|
||||
def set_problem(self, problem):
|
||||
self._problem = problem
|
||||
|
||||
@@ -15,6 +15,12 @@ class DomainEquationCondition(ConditionInterface):
|
||||
self.domain = domain
|
||||
self.equation = equation
|
||||
|
||||
def residual(self, model):
|
||||
"""
|
||||
Compute the residual of the condition.
|
||||
"""
|
||||
self.batch_residual(model, self.domain, self.equation)
|
||||
|
||||
@staticmethod
|
||||
def batch_residual(model, input_pts, equation):
|
||||
"""
|
||||
@@ -22,7 +28,7 @@ class DomainEquationCondition(ConditionInterface):
|
||||
output points are provided as arguments.
|
||||
|
||||
:param torch.nn.Module model: The model to evaluate the condition.
|
||||
:param torch.Tensor input_points: The input points.
|
||||
:param torch.Tensor output_points: The output points.
|
||||
:param torch.Tensor input_pts: The input points.
|
||||
:param torch.Tensor equation: The output points.
|
||||
"""
|
||||
return equation.residual(model(input_pts))
|
||||
return equation.residual(input_pts, model(input_pts))
|
||||
@@ -40,4 +40,5 @@ class DomainOutputCondition(ConditionInterface):
|
||||
:param torch.Tensor input_points: The input points.
|
||||
:param torch.Tensor output_points: The output points.
|
||||
"""
|
||||
|
||||
return output_points - model(input_points)
|
||||
@@ -1,4 +1,5 @@
|
||||
import torch
|
||||
import torch
|
||||
|
||||
from .domain_interface import DomainInterface
|
||||
from ..label_tensor import LabelTensor
|
||||
|
||||
@@ -5,7 +5,6 @@ import torch
|
||||
from torch import Tensor
|
||||
|
||||
|
||||
|
||||
# class LabelTensor(torch.Tensor):
|
||||
# """Torch tensor with a label for any column."""
|
||||
|
||||
@@ -307,13 +306,13 @@ from torch import Tensor
|
||||
# s = "no labels\n"
|
||||
# s += super().__str__()
|
||||
# return s
|
||||
|
||||
def issubset(a, b):
|
||||
"""
|
||||
Check if a is a subset of b.
|
||||
"""
|
||||
return set(a).issubset(set(b))
|
||||
|
||||
|
||||
class LabelTensor(torch.Tensor):
|
||||
"""Torch tensor with a label for any column."""
|
||||
|
||||
@@ -403,6 +402,10 @@ class LabelTensor(torch.Tensor):
|
||||
return LabelTensor(new_tensor, label_to_extract)
|
||||
|
||||
def __str__(self):
|
||||
"""
|
||||
returns a string with the representation of the class
|
||||
"""
|
||||
|
||||
s = ''
|
||||
for key, value in self.labels.items():
|
||||
s += f"{key}: {value}\n"
|
||||
@@ -431,4 +434,32 @@ class LabelTensor(torch.Tensor):
|
||||
|
||||
@property
|
||||
def dtype(self):
|
||||
return super().dtype
|
||||
return super().dtype
|
||||
|
||||
|
||||
def to(self, *args, **kwargs):
|
||||
"""
|
||||
Performs Tensor dtype and/or device conversion. For more details, see
|
||||
:meth:`torch.Tensor.to`.
|
||||
"""
|
||||
tmp = super().to(*args, **kwargs)
|
||||
new = self.__class__.clone(self)
|
||||
new.data = tmp.data
|
||||
return new
|
||||
|
||||
|
||||
def clone(self, *args, **kwargs):
|
||||
"""
|
||||
Clone the LabelTensor. For more details, see
|
||||
:meth:`torch.Tensor.clone`.
|
||||
|
||||
:return: A copy of the tensor.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
# # used before merging
|
||||
# try:
|
||||
# out = LabelTensor(super().clone(*args, **kwargs), self.labels)
|
||||
# except:
|
||||
# out = super().clone(*args, **kwargs)
|
||||
out = LabelTensor(super().clone(*args, **kwargs), self.labels)
|
||||
return out
|
||||
@@ -20,7 +20,6 @@ class AbstractProblem(metaclass=ABCMeta):
|
||||
|
||||
def __init__(self):
|
||||
|
||||
|
||||
self._discretized_domains = {}
|
||||
|
||||
for name, domain in self.domains.items():
|
||||
@@ -28,18 +27,19 @@ class AbstractProblem(metaclass=ABCMeta):
|
||||
self._discretized_domains[name] = domain
|
||||
|
||||
for condition_name in self.conditions:
|
||||
self.conditions[condition_name]._problem = self
|
||||
self.conditions[condition_name].set_problem(self)
|
||||
|
||||
# # variable storing all points
|
||||
# self.input_pts = {}
|
||||
self.input_pts = {}
|
||||
|
||||
# # varible to check if sampling is done. If no location
|
||||
# # element is presented in Condition this variable is set to true
|
||||
# self._have_sampled_points = {}
|
||||
# for condition_name in self.conditions:
|
||||
# self._have_sampled_points[condition_name] = False
|
||||
for condition_name in self.conditions:
|
||||
self._discretized_domains[condition_name] = False
|
||||
|
||||
# # put in self.input_pts all the points that we don't need to sample
|
||||
# self._span_condition_points()
|
||||
self._span_condition_points()
|
||||
|
||||
def __deepcopy__(self, memo):
|
||||
"""
|
||||
@@ -125,7 +125,7 @@ class AbstractProblem(metaclass=ABCMeta):
|
||||
if hasattr(condition, "input_points"):
|
||||
samples = condition.input_points
|
||||
self.input_pts[condition_name] = samples
|
||||
self._have_sampled_points[condition_name] = True
|
||||
self._discretized_domains[condition_name] = True
|
||||
if hasattr(self, "unknown_parameter_domain"):
|
||||
# initialize the unknown parameters of the inverse problem given
|
||||
# the domain the user gives
|
||||
@@ -141,7 +141,7 @@ class AbstractProblem(metaclass=ABCMeta):
|
||||
)
|
||||
|
||||
def discretise_domain(
|
||||
self, n, mode="random", variables="all", locations="all"
|
||||
self, n, mode="random", variables="all", domains="all"
|
||||
):
|
||||
"""
|
||||
Generate a set of points to span the `Location` of all the conditions of
|
||||
@@ -192,31 +192,37 @@ class AbstractProblem(metaclass=ABCMeta):
|
||||
f"should be in {self.input_variables}.",
|
||||
)
|
||||
|
||||
# check consistency location
|
||||
locations_to_sample = [
|
||||
condition
|
||||
for condition in self.conditions
|
||||
if hasattr(self.conditions[condition], "location")
|
||||
]
|
||||
if locations == "all":
|
||||
# only locations that can be sampled
|
||||
locations = locations_to_sample
|
||||
else:
|
||||
check_consistency(locations, str)
|
||||
# # check consistency location # TODO: check if this is needed (from 0.1)
|
||||
# locations_to_sample = [
|
||||
# condition
|
||||
# for condition in self.conditions
|
||||
# if hasattr(self.conditions[condition], "location")
|
||||
# ]
|
||||
# if locations == "all":
|
||||
# # only locations that can be sampled
|
||||
# locations = locations_to_sample
|
||||
# else:
|
||||
# check_consistency(locations, str)
|
||||
|
||||
if sorted(locations) != sorted(locations_to_sample):
|
||||
# if sorted(locations) != sorted(locations_to_sample):
|
||||
if domains == "all":
|
||||
domains = [condition for condition in self.conditions]
|
||||
else:
|
||||
check_consistency(domains, str)
|
||||
print(domains)
|
||||
if sorted(domains) != sorted(self.conditions):
|
||||
TypeError(
|
||||
f"Wrong locations for sampling. Location ",
|
||||
f"should be in {locations_to_sample}.",
|
||||
)
|
||||
|
||||
# sampling
|
||||
for location in locations:
|
||||
condition = self.conditions[location]
|
||||
for d in domains:
|
||||
condition = self.conditions[d]
|
||||
|
||||
# we try to check if we have already sampled
|
||||
try:
|
||||
already_sampled = [self.input_pts[location]]
|
||||
already_sampled = [self.input_pts[d]]
|
||||
# if we have not sampled, a key error is thrown
|
||||
except KeyError:
|
||||
already_sampled = []
|
||||
@@ -225,25 +231,27 @@ class AbstractProblem(metaclass=ABCMeta):
|
||||
# but we want to sample again we set already_sampled
|
||||
# to an empty list since we need to sample again, and
|
||||
# self._have_sampled_points to False.
|
||||
if self._have_sampled_points[location]:
|
||||
if self._discretized_domains[d]:
|
||||
already_sampled = []
|
||||
self._have_sampled_points[location] = False
|
||||
|
||||
self._discretized_domains[d] = False
|
||||
print(condition.domain)
|
||||
print(d)
|
||||
# build samples
|
||||
samples = [
|
||||
condition.location.sample(n=n, mode=mode, variables=variables)
|
||||
self.domains[d].sample(n=n, mode=mode, variables=variables)
|
||||
] + already_sampled
|
||||
pts = merge_tensors(samples)
|
||||
self.input_pts[location] = pts
|
||||
self.input_pts[d] = pts
|
||||
|
||||
# the condition is sampled if input_pts contains all labels
|
||||
if sorted(self.input_pts[location].labels) == sorted(
|
||||
if sorted(self.input_pts[d].labels) == sorted(
|
||||
self.input_variables
|
||||
):
|
||||
self._have_sampled_points[location] = True
|
||||
self.input_pts[location] = self.input_pts[location].extract(
|
||||
sorted(self.input_variables)
|
||||
)
|
||||
# self._have_sampled_points[location] = True
|
||||
# self.input_pts[location] = self.input_pts[location].extract(
|
||||
# sorted(self.input_variables)
|
||||
# )
|
||||
self._have_sampled_points[d] = True
|
||||
|
||||
def add_points(self, new_points):
|
||||
"""
|
||||
|
||||
@@ -134,8 +134,6 @@ class SupervisedSolver(SolverInterface):
|
||||
condition = self.problem.conditions[condition_name]
|
||||
pts = batch.input
|
||||
out = batch.output
|
||||
print(out)
|
||||
print(pts)
|
||||
|
||||
if condition_name not in self.problem.conditions:
|
||||
raise RuntimeError("Something wrong happened.")
|
||||
|
||||
@@ -5,7 +5,7 @@ from pina import Condition, LabelTensor
|
||||
from pina.solvers import SupervisedSolver
|
||||
from pina.trainer import Trainer
|
||||
from pina.model import FeedForward
|
||||
from pina.loss.loss_interface import LpLoss
|
||||
from pina.loss import LpLoss
|
||||
|
||||
|
||||
class NeuralOperatorProblem(AbstractProblem):
|
||||
@@ -94,11 +94,9 @@ class GraphModel(torch.nn.Module):
|
||||
return x
|
||||
|
||||
def test_graph():
|
||||
|
||||
solver = AutoSolver(problem = problem, model=GraphModel(2, 1), loss=LpLoss())
|
||||
trainer = Trainer(solver=solver, max_epochs=30, accelerator='cpu', batch_size=20)
|
||||
trainer.train()
|
||||
assert False
|
||||
|
||||
|
||||
def test_train_cpu():
|
||||
@@ -107,6 +105,7 @@ def test_train_cpu():
|
||||
trainer.train()
|
||||
|
||||
|
||||
|
||||
# def test_train_restore():
|
||||
# tmpdir = "tests/tmp_restore"
|
||||
# solver = SupervisedSolver(problem=problem,
|
||||
@@ -153,4 +152,4 @@ def test_train_cpu():
|
||||
# model=model_extra_feats,
|
||||
# extra_features=extra_feats)
|
||||
# trainer = Trainer(solver=pinn, max_epochs=5, accelerator='cpu')
|
||||
# trainer.train()
|
||||
# trainer.train()
|
||||
|
||||
Reference in New Issue
Block a user