Geometry Operations Enhancement (#122)
* updating exclusion domain - update sample/ is_inside - create tests * difference fixes - random iteration list for sample * created Intersection * created a Difference domain * unittest * docstrings and minor fixes * Refacotring Geometries - added OperationInterface - redid test cases - edited Union, Intersect, Exclusion, and Difference to inherit from OperationInterface - simplified Union, Intersect, Exclusion, and Difference * rm lighting logs --------- Co-authored-by: Dario Coscia <dariocoscia@cli-10-110-16-239.WIFIeduroamSTUD.units.it>
This commit is contained in:
@@ -2,11 +2,18 @@ __all__ = [
|
||||
'Location',
|
||||
'CartesianDomain',
|
||||
'EllipsoidDomain',
|
||||
'Union'
|
||||
'Union',
|
||||
'Intersection',
|
||||
'Exclusion',
|
||||
'Difference',
|
||||
'OperationInterface'
|
||||
]
|
||||
|
||||
from .location import Location
|
||||
from .cartesian import CartesianDomain
|
||||
from .ellipsoid import EllipsoidDomain
|
||||
from .difference_domain import Difference
|
||||
from .exclusion_domain import Exclusion
|
||||
from .intersection_domain import Intersection
|
||||
from .union_domain import Union
|
||||
from .difference_domain import Difference
|
||||
from .operation_interface import OperationInterface
|
||||
|
||||
@@ -1,28 +1,88 @@
|
||||
"""Module for Location class."""
|
||||
|
||||
from .location import Location
|
||||
import torch
|
||||
from .exclusion_domain import Exclusion
|
||||
from .operation_interface import OperationInterface
|
||||
from ..label_tensor import LabelTensor
|
||||
|
||||
|
||||
class Difference(Location):
|
||||
"""
|
||||
"""
|
||||
class Difference(OperationInterface):
|
||||
""" PINA implementation of Difference of Domains."""
|
||||
|
||||
def __init__(self, first, second):
|
||||
def __init__(self, geometries):
|
||||
""" PINA implementation of Difference of Domains.
|
||||
|
||||
self.first = first
|
||||
self.second = second
|
||||
:param list geometries: A list of geometries from 'pina.geometry'
|
||||
such as 'EllipsoidDomain' or 'CartesianDomain'. The first
|
||||
geometry in the list is the geometry from which points are
|
||||
sampled. The rest of the geometries are the geometries that
|
||||
are excluded from the first geometry to find the difference.
|
||||
|
||||
:Example:
|
||||
# Create two ellipsoid domains
|
||||
>>> ellipsoid1 = EllipsoidDomain({'x': [-1, 1], 'y': [-1, 1]})
|
||||
>>> ellipsoid2 = EllipsoidDomain({'x': [0, 2], 'y': [0, 2]})
|
||||
|
||||
# Create a Difference of the ellipsoid domains
|
||||
>>> difference = Difference([ellipsoid1, ellipsoid2])
|
||||
"""
|
||||
super().__init__(geometries)
|
||||
|
||||
def is_inside(self, point, check_border=False):
|
||||
for geometry in self.geometries[1:]:
|
||||
if geometry.is_inside(point):
|
||||
return False
|
||||
return self.geometries[0].is_inside(point, check_border)
|
||||
|
||||
def sample(self, n, mode='random', variables='all'):
|
||||
"""
|
||||
"""
|
||||
assert mode == 'random', 'Only random mode is implemented'
|
||||
"""Sample routine for difference domain.
|
||||
|
||||
samples = []
|
||||
while len(samples) < n:
|
||||
sample = self.first.sample(1, 'random')
|
||||
if not self.second.is_inside(sample):
|
||||
samples.append(sample)
|
||||
:param n: Number of points to sample in the shape.
|
||||
:type n: int
|
||||
:param mode: Mode for sampling, defaults to 'random'.
|
||||
Available modes include: random sampling, 'random'.
|
||||
:type mode: str, optional
|
||||
:param variables: pinn variable to be sampled, defaults to 'all'.
|
||||
:type variables: str or list[str], optional
|
||||
|
||||
import torch
|
||||
return LabelTensor(torch.cat(samples), labels=['x', 'y'])
|
||||
:Example:
|
||||
# Create two Cartesian domains
|
||||
>>> cartesian1 = CartesianDomain({'x': [0, 2], 'y': [0, 2]})
|
||||
>>> cartesian2 = CartesianDomain({'x': [1, 3], 'y': [1, 3]})
|
||||
|
||||
# Create a Difference of the ellipsoid domains
|
||||
>>> difference = Difference([cartesian1, cartesian2])
|
||||
|
||||
>>> difference.sample(n=5)
|
||||
LabelTensor([[0.8400, 0.9179],
|
||||
[0.9154, 0.5769],
|
||||
[1.7403, 0.4835],
|
||||
[0.9545, 1.2851],
|
||||
[1.3726, 0.9831]])
|
||||
|
||||
>>> len(difference.sample(n=5)
|
||||
5
|
||||
|
||||
"""
|
||||
if mode != 'random':
|
||||
raise NotImplementedError(
|
||||
f'{mode} is not a valid mode for sampling.')
|
||||
|
||||
sampled = []
|
||||
|
||||
# sample the points
|
||||
while len(sampled) < n:
|
||||
# get sample point from first geometry
|
||||
point = self.geometries[0].sample(1, mode, variables)
|
||||
is_inside = False
|
||||
|
||||
# check if point is inside any other geometry
|
||||
for geometry in self.geometries[1:]:
|
||||
# if point is inside any other geometry, break
|
||||
if geometry.is_inside(point):
|
||||
is_inside = True
|
||||
break
|
||||
# if point is not inside any other geometry, add to sampled
|
||||
if not is_inside:
|
||||
sampled.append(point)
|
||||
|
||||
return LabelTensor(torch.cat(sampled), labels=self.variables)
|
||||
|
||||
102
pina/geometry/exclusion_domain.py
Normal file
102
pina/geometry/exclusion_domain.py
Normal file
@@ -0,0 +1,102 @@
|
||||
"""Module for Location class."""
|
||||
import torch
|
||||
from .location import Location
|
||||
from ..utils import check_consistency
|
||||
from ..label_tensor import LabelTensor
|
||||
import random
|
||||
from .operation_interface import OperationInterface
|
||||
|
||||
|
||||
class Exclusion(OperationInterface):
|
||||
""" PINA implementation of Exclusion of Domains."""
|
||||
|
||||
def __init__(self, geometries):
|
||||
""" PINA implementation of Exclusion of Domains.
|
||||
|
||||
:param list geometries: A list of geometries from 'pina.geometry'
|
||||
such as 'EllipsoidDomain' or 'CartesianDomain'.
|
||||
|
||||
:Example:
|
||||
# Create two ellipsoid domains
|
||||
>>> ellipsoid1 = EllipsoidDomain({'x': [-1, 1], 'y': [-1, 1]})
|
||||
>>> ellipsoid2 = EllipsoidDomain({'x': [0, 2], 'y': [0, 2]})
|
||||
|
||||
# Create a Exclusion of the ellipsoid domains
|
||||
>>> exclusion = Exclusion([ellipsoid1, ellipsoid2])
|
||||
"""
|
||||
super().__init__(geometries)
|
||||
|
||||
def is_inside(self, point, check_border=False):
|
||||
"""Check if a point is inside the Exclusion domain.
|
||||
|
||||
:param point: Point to be checked.
|
||||
:type point: torch.Tensor
|
||||
:param bool check_border: If True, the border is considered inside.
|
||||
:return: True if the point is inside the Exclusion domain, False otherwise.
|
||||
:rtype: bool
|
||||
"""
|
||||
flag = 0
|
||||
for geometry in self.geometries:
|
||||
if geometry.is_inside(point, check_border):
|
||||
flag += 1
|
||||
return flag == 1
|
||||
|
||||
def sample(self, n, mode='random', variables='all'):
|
||||
"""Sample routine for exclusion domain.
|
||||
|
||||
:param n: Number of points to sample in the shape.
|
||||
:type n: int
|
||||
:param mode: Mode for sampling, defaults to 'random'.
|
||||
Available modes include: random sampling, 'random'.
|
||||
:type mode: str, optional
|
||||
:param variables: pinn variable to be sampled, defaults to 'all'.
|
||||
:type variables: str or list[str], optional
|
||||
|
||||
:Example:
|
||||
# Create two Cartesian domains
|
||||
>>> cartesian1 = CartesianDomain({'x': [0, 2], 'y': [0, 2]})
|
||||
>>> cartesian2 = CartesianDomain({'x': [1, 3], 'y': [1, 3]})
|
||||
|
||||
# Create a Exclusion of the ellipsoid domains
|
||||
>>> Exclusion = Exclusion([cartesian1, cartesian2])
|
||||
|
||||
>>> Exclusion.sample(n=5)
|
||||
LabelTensor([[2.4187, 1.5792],
|
||||
[2.7456, 2.3868],
|
||||
[2.3830, 1.7037],
|
||||
[0.8636, 1.8453],
|
||||
[0.1978, 0.3526]])
|
||||
|
||||
>>> len(Exclusion.sample(n=5)
|
||||
5
|
||||
|
||||
"""
|
||||
if mode != 'random':
|
||||
raise NotImplementedError(
|
||||
f'{mode} is not a valid mode for sampling.')
|
||||
|
||||
sampled = []
|
||||
|
||||
# calculate the number of points to sample for each geometry and the remainder.
|
||||
remainder = n % len(self.geometries)
|
||||
num_points = n // len(self.geometries)
|
||||
|
||||
# sample the points
|
||||
# NB. geometries as shuffled since if we sample
|
||||
# multiple times just one point, we would end
|
||||
# up sampling only from the first geometry.
|
||||
iter_ = random.sample(self.geometries, len(self.geometries))
|
||||
for i, geometry in enumerate(iter_):
|
||||
sampled_points = []
|
||||
# int(i < remainder) is one only if we have a remainder
|
||||
# different than zero. Notice that len(geometries) is
|
||||
# always smaller than remaider.
|
||||
# makes sure point is uniquely inside 1 shape.
|
||||
while len(sampled_points) < (num_points + int(i < remainder)):
|
||||
sample = geometry.sample(1, mode, variables)
|
||||
# if not self.is_inside(sample) --> will be the intersection
|
||||
if self.is_inside(sample):
|
||||
sampled_points.append(sample)
|
||||
sampled += sampled_points
|
||||
|
||||
return LabelTensor(torch.cat(sampled), labels=self.variables)
|
||||
102
pina/geometry/intersection_domain.py
Normal file
102
pina/geometry/intersection_domain.py
Normal file
@@ -0,0 +1,102 @@
|
||||
"""Module for Location class."""
|
||||
import torch
|
||||
from .exclusion_domain import Exclusion
|
||||
from ..label_tensor import LabelTensor
|
||||
from .operation_interface import OperationInterface
|
||||
import random
|
||||
|
||||
|
||||
class Intersection(OperationInterface):
|
||||
""" PINA implementation of Intersection of Domains."""
|
||||
|
||||
def __init__(self, geometries):
|
||||
""" PINA implementation of Intersection of Domains.
|
||||
|
||||
:param list geometries: A list of geometries from 'pina.geometry'
|
||||
such as 'EllipsoidDomain' or 'CartesianDomain'. The intersection
|
||||
will be taken between all the geometries in the list. The resulting
|
||||
geometry will be the intersection of all the geometries in the list.
|
||||
|
||||
:Example:
|
||||
# Create two ellipsoid domains
|
||||
>>> ellipsoid1 = EllipsoidDomain({'x': [-1, 1], 'y': [-1, 1]})
|
||||
>>> ellipsoid2 = EllipsoidDomain({'x': [0, 2], 'y': [0, 2]})
|
||||
|
||||
# Create a Intersection of the ellipsoid domains
|
||||
>>> intersection = Intersection([ellipsoid1, ellipsoid2])
|
||||
"""
|
||||
super().__init__(geometries)
|
||||
|
||||
def is_inside(self, point, check_border=False):
|
||||
"""Check if a point is inside the Exclusion domain.
|
||||
|
||||
:param point: Point to be checked.
|
||||
:type point: torch.Tensor
|
||||
:param bool check_border: If True, the border is considered inside.
|
||||
:return: True if the point is inside the Exclusion domain, False otherwise.
|
||||
:rtype: bool
|
||||
"""
|
||||
flag = 0
|
||||
for geometry in self.geometries:
|
||||
if geometry.is_inside(point, check_border):
|
||||
flag += 1
|
||||
return flag == len(self.geometries)
|
||||
|
||||
def sample(self, n, mode='random', variables='all'):
|
||||
"""Sample routine for intersection domain.
|
||||
|
||||
:param n: Number of points to sample in the shape.
|
||||
:type n: int
|
||||
:param mode: Mode for sampling, defaults to 'random'.
|
||||
Available modes include: random sampling, 'random'.
|
||||
:type mode: str, optional
|
||||
:param variables: pinn variable to be sampled, defaults to 'all'.
|
||||
:type variables: str or list[str], optional
|
||||
|
||||
:Example:
|
||||
# Create two Cartesian domains
|
||||
>>> cartesian1 = CartesianDomain({'x': [0, 2], 'y': [0, 2]})
|
||||
>>> cartesian2 = CartesianDomain({'x': [1, 3], 'y': [1, 3]})
|
||||
|
||||
# Create a Intersection of the ellipsoid domains
|
||||
>>> intersection = Intersection([cartesian1, cartesian2])
|
||||
|
||||
>>> intersection.sample(n=5)
|
||||
LabelTensor([[1.7697, 1.8654],
|
||||
[1.2841, 1.1208],
|
||||
[1.7289, 1.9843],
|
||||
[1.3332, 1.2448],
|
||||
[1.9902, 1.4458]])
|
||||
|
||||
>>> len(intersection.sample(n=5)
|
||||
5
|
||||
|
||||
"""
|
||||
if mode != 'random':
|
||||
raise NotImplementedError(
|
||||
f'{mode} is not a valid mode for sampling.')
|
||||
|
||||
sampled = []
|
||||
|
||||
# calculate the number of points to sample for each geometry and the remainder.
|
||||
remainder = n % len(self.geometries)
|
||||
num_points = n // len(self.geometries)
|
||||
|
||||
# sample the points
|
||||
# NB. geometries as shuffled since if we sample
|
||||
# multiple times just one point, we would end
|
||||
# up sampling only from the first geometry.
|
||||
iter_ = random.sample(self.geometries, len(self.geometries))
|
||||
for i, geometry in enumerate(iter_):
|
||||
sampled_points = []
|
||||
# int(i < remainder) is one only if we have a remainder
|
||||
# different than zero. Notice that len(geometries) is
|
||||
# always smaller than remaider.
|
||||
# makes sure point is uniquely inside 1 shape.
|
||||
while len(sampled_points) < (num_points + int(i < remainder)):
|
||||
sample = geometry.sample(1, mode, variables)
|
||||
if self.is_inside(sample):
|
||||
sampled_points.append(sample)
|
||||
sampled += sampled_points
|
||||
|
||||
return LabelTensor(torch.cat(sampled), labels=self.variables)
|
||||
@@ -14,4 +14,17 @@ class Location(metaclass=ABCMeta):
|
||||
Abstract method for sampling a point from the location. To be
|
||||
implemented in the child class.
|
||||
"""
|
||||
pass
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def is_inside(self, point, check_border=False):
|
||||
"""
|
||||
Abstract method for checking if a point is inside the location. To be
|
||||
implemented in the child class.
|
||||
|
||||
:param tensor point: A tensor point to be checked.
|
||||
:param bool check_border: a boolean that determines whether the border
|
||||
of the location is considered checked to be considered inside or
|
||||
not. Defaults to False.
|
||||
"""
|
||||
pass
|
||||
|
||||
53
pina/geometry/operation_interface.py
Normal file
53
pina/geometry/operation_interface.py
Normal file
@@ -0,0 +1,53 @@
|
||||
import torch
|
||||
from .location import Location
|
||||
from ..utils import check_consistency
|
||||
from ..label_tensor import LabelTensor
|
||||
from abc import ABCMeta, abstractmethod
|
||||
import random
|
||||
|
||||
|
||||
class OperationInterface(Location, metaclass=ABCMeta):
|
||||
def __init__(self, geometries):
|
||||
"""
|
||||
Abstract Operation class.
|
||||
Any geometry operation entity must inherit from this class.
|
||||
|
||||
:param list geometries: A list of geometries from 'pina.geometry'
|
||||
such as 'EllipsoidDomain' or 'CartesianDomain'.
|
||||
"""
|
||||
# check consistency geometries
|
||||
check_consistency(geometries, Location)
|
||||
|
||||
# check we are passing always different
|
||||
# geometries with the same labels.
|
||||
self._check_dimensions(geometries)
|
||||
|
||||
# assign geometries
|
||||
self._geometries = geometries
|
||||
|
||||
@property
|
||||
def geometries(self):
|
||||
"""
|
||||
The geometries."""
|
||||
return self._geometries
|
||||
|
||||
@property
|
||||
def variables(self):
|
||||
"""
|
||||
Spatial variables.
|
||||
|
||||
:return: All the variables defined in ``__init__`` in order.
|
||||
:rtype: list[str]
|
||||
"""
|
||||
return self.geometries[0].variables
|
||||
|
||||
def _check_dimensions(self, geometries):
|
||||
"""Check if the dimensions of the geometries are consistent.
|
||||
|
||||
:param geometries: Geometries to be checked.
|
||||
:type geometries: list[Location]
|
||||
"""
|
||||
for geometry in geometries:
|
||||
if geometry.variables != geometries[0].variables:
|
||||
raise NotImplementedError(
|
||||
f'The geometries need to have same dimensions and labels.')
|
||||
@@ -1,11 +1,12 @@
|
||||
import torch
|
||||
from .location import Location
|
||||
from .operation_interface import OperationInterface
|
||||
from ..utils import check_consistency
|
||||
from ..label_tensor import LabelTensor
|
||||
import random
|
||||
|
||||
|
||||
class Union(Location):
|
||||
class Union(OperationInterface):
|
||||
""" PINA implementation of Unions of Domains."""
|
||||
|
||||
def __init__(self, geometries):
|
||||
@@ -23,37 +24,7 @@ class Union(Location):
|
||||
>>> union = GeometryUnion([ellipsoid1, ellipsoid2])
|
||||
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
# union checks
|
||||
check_consistency(geometries, Location)
|
||||
self._check_union_dimensions(geometries)
|
||||
|
||||
# assign geometries
|
||||
self._geometries = geometries
|
||||
|
||||
@property
|
||||
def geometries(self):
|
||||
"""
|
||||
The geometries."""
|
||||
return self._geometries
|
||||
|
||||
@property
|
||||
def variables(self):
|
||||
"""
|
||||
Spatial variables.
|
||||
|
||||
:return: All the spatial variables defined in '__init__()' in order.
|
||||
:rtype: list[str]
|
||||
"""
|
||||
all_variables = []
|
||||
seen_variables = set()
|
||||
for geometry in self.geometries:
|
||||
for variable in geometry.variables:
|
||||
if variable not in seen_variables:
|
||||
all_variables.append(variable)
|
||||
seen_variables.add(variable)
|
||||
return all_variables
|
||||
super().__init__(geometries)
|
||||
|
||||
def is_inside(self, point, check_border=False):
|
||||
"""Check if a point is inside the union domain.
|
||||
@@ -72,7 +43,7 @@ class Union(Location):
|
||||
return False
|
||||
|
||||
def sample(self, n, mode='random', variables='all'):
|
||||
"""Sample routine.
|
||||
"""Sample routine for union domain.
|
||||
|
||||
:param n: Number of points to sample in the shape.
|
||||
:type n: int
|
||||
@@ -84,23 +55,21 @@ class Union(Location):
|
||||
|
||||
:Example:
|
||||
# Create two ellipsoid domains
|
||||
>>> ellipsoid1 = EllipsoidDomain({'x': [-1, 1], 'y': [-1, 1]})
|
||||
>>> ellipsoid2 = EllipsoidDomain({'x': [0, 2], 'y': [0, 2]})
|
||||
>>> cartesian1 = CartesianDomain({'x': [0, 2], 'y': [0, 2]})
|
||||
>>> cartesian2 = CartesianDomain({'x': [1, 3], 'y': [1, 3]})
|
||||
|
||||
# Create a union of the ellipsoid domains
|
||||
>>> union = Union([ellipsoid1, ellipsoid2])
|
||||
>>> union = Union([cartesian1, cartesian2])
|
||||
|
||||
>>> union.sample(n=1000)
|
||||
LabelTensor([[-0.2025, 0.0072],
|
||||
[ 0.0358, 0.5748],
|
||||
[ 0.5083, 0.0482],
|
||||
...,
|
||||
[ 0.5857, 0.9279],
|
||||
[ 1.1496, 1.7339],
|
||||
[ 0.7650, 1.0469]])
|
||||
>>> union.sample(n=5)
|
||||
LabelTensor([[1.2128, 2.1991],
|
||||
[1.3530, 2.4317],
|
||||
[2.2562, 1.6605],
|
||||
[0.8451, 1.9878],
|
||||
[1.8623, 0.7102]])
|
||||
|
||||
>>> len(union.sample(n=1000)
|
||||
1000
|
||||
>>> len(union.sample(n=5)
|
||||
5
|
||||
"""
|
||||
sampled_points = []
|
||||
|
||||
@@ -122,15 +91,4 @@ class Union(Location):
|
||||
if len(sampled_points) >= n:
|
||||
break
|
||||
|
||||
return LabelTensor(torch.cat(sampled_points), labels=[f'{i}' for i in self.variables])
|
||||
|
||||
def _check_union_dimensions(self, geometries):
|
||||
"""Check if the dimensions of the geometries are consistent.
|
||||
|
||||
:param geometries: Geometries to be checked.
|
||||
:type geometries: list[Location]
|
||||
"""
|
||||
for geometry in geometries:
|
||||
if geometry.variables != geometries[0].variables:
|
||||
raise NotImplementedError(
|
||||
f'The geometries need to be the same dimensions. {geometry.variables} is not equal to {geometries[0].variables}')
|
||||
return LabelTensor(torch.cat(sampled_points), labels=self.variables)
|
||||
|
||||
Reference in New Issue
Block a user