Geometry Operations Enhancement (#122)
* updating exclusion domain - update sample/ is_inside - create tests * difference fixes - random iteration list for sample * created Intersection * created a Difference domain * unittest * docstrings and minor fixes * Refacotring Geometries - added OperationInterface - redid test cases - edited Union, Intersect, Exclusion, and Difference to inherit from OperationInterface - simplified Union, Intersect, Exclusion, and Difference * rm lighting logs --------- Co-authored-by: Dario Coscia <dariocoscia@cli-10-110-16-239.WIFIeduroamSTUD.units.it>
This commit is contained in:
@@ -1,11 +1,12 @@
|
||||
import torch
|
||||
from .location import Location
|
||||
from .operation_interface import OperationInterface
|
||||
from ..utils import check_consistency
|
||||
from ..label_tensor import LabelTensor
|
||||
import random
|
||||
|
||||
|
||||
class Union(Location):
|
||||
class Union(OperationInterface):
|
||||
""" PINA implementation of Unions of Domains."""
|
||||
|
||||
def __init__(self, geometries):
|
||||
@@ -23,37 +24,7 @@ class Union(Location):
|
||||
>>> union = GeometryUnion([ellipsoid1, ellipsoid2])
|
||||
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
# union checks
|
||||
check_consistency(geometries, Location)
|
||||
self._check_union_dimensions(geometries)
|
||||
|
||||
# assign geometries
|
||||
self._geometries = geometries
|
||||
|
||||
@property
|
||||
def geometries(self):
|
||||
"""
|
||||
The geometries."""
|
||||
return self._geometries
|
||||
|
||||
@property
|
||||
def variables(self):
|
||||
"""
|
||||
Spatial variables.
|
||||
|
||||
:return: All the spatial variables defined in '__init__()' in order.
|
||||
:rtype: list[str]
|
||||
"""
|
||||
all_variables = []
|
||||
seen_variables = set()
|
||||
for geometry in self.geometries:
|
||||
for variable in geometry.variables:
|
||||
if variable not in seen_variables:
|
||||
all_variables.append(variable)
|
||||
seen_variables.add(variable)
|
||||
return all_variables
|
||||
super().__init__(geometries)
|
||||
|
||||
def is_inside(self, point, check_border=False):
|
||||
"""Check if a point is inside the union domain.
|
||||
@@ -72,7 +43,7 @@ class Union(Location):
|
||||
return False
|
||||
|
||||
def sample(self, n, mode='random', variables='all'):
|
||||
"""Sample routine.
|
||||
"""Sample routine for union domain.
|
||||
|
||||
:param n: Number of points to sample in the shape.
|
||||
:type n: int
|
||||
@@ -84,23 +55,21 @@ class Union(Location):
|
||||
|
||||
:Example:
|
||||
# Create two ellipsoid domains
|
||||
>>> ellipsoid1 = EllipsoidDomain({'x': [-1, 1], 'y': [-1, 1]})
|
||||
>>> ellipsoid2 = EllipsoidDomain({'x': [0, 2], 'y': [0, 2]})
|
||||
>>> cartesian1 = CartesianDomain({'x': [0, 2], 'y': [0, 2]})
|
||||
>>> cartesian2 = CartesianDomain({'x': [1, 3], 'y': [1, 3]})
|
||||
|
||||
# Create a union of the ellipsoid domains
|
||||
>>> union = Union([ellipsoid1, ellipsoid2])
|
||||
>>> union = Union([cartesian1, cartesian2])
|
||||
|
||||
>>> union.sample(n=1000)
|
||||
LabelTensor([[-0.2025, 0.0072],
|
||||
[ 0.0358, 0.5748],
|
||||
[ 0.5083, 0.0482],
|
||||
...,
|
||||
[ 0.5857, 0.9279],
|
||||
[ 1.1496, 1.7339],
|
||||
[ 0.7650, 1.0469]])
|
||||
>>> union.sample(n=5)
|
||||
LabelTensor([[1.2128, 2.1991],
|
||||
[1.3530, 2.4317],
|
||||
[2.2562, 1.6605],
|
||||
[0.8451, 1.9878],
|
||||
[1.8623, 0.7102]])
|
||||
|
||||
>>> len(union.sample(n=1000)
|
||||
1000
|
||||
>>> len(union.sample(n=5)
|
||||
5
|
||||
"""
|
||||
sampled_points = []
|
||||
|
||||
@@ -122,15 +91,4 @@ class Union(Location):
|
||||
if len(sampled_points) >= n:
|
||||
break
|
||||
|
||||
return LabelTensor(torch.cat(sampled_points), labels=[f'{i}' for i in self.variables])
|
||||
|
||||
def _check_union_dimensions(self, geometries):
|
||||
"""Check if the dimensions of the geometries are consistent.
|
||||
|
||||
:param geometries: Geometries to be checked.
|
||||
:type geometries: list[Location]
|
||||
"""
|
||||
for geometry in geometries:
|
||||
if geometry.variables != geometries[0].variables:
|
||||
raise NotImplementedError(
|
||||
f'The geometries need to be the same dimensions. {geometry.variables} is not equal to {geometries[0].variables}')
|
||||
return LabelTensor(torch.cat(sampled_points), labels=self.variables)
|
||||
|
||||
Reference in New Issue
Block a user