fix connection issue
This commit is contained in:
committed by
Giovanni Canali
parent
09596a912c
commit
4ad939fdb9
@@ -4,20 +4,19 @@ import warnings
|
||||
import requests
|
||||
import torch
|
||||
from io import BytesIO
|
||||
from requests.exceptions import RequestException
|
||||
from ... import Condition
|
||||
from ... import LabelTensor
|
||||
from ...operator import laplacian
|
||||
from ...domain import CartesianDomain
|
||||
from ...equation import Equation, FixedValue
|
||||
from ...problem import SpatialProblem, InverseProblem
|
||||
from ...utils import custom_warning_format
|
||||
from ...utils import custom_warning_format, check_consistency
|
||||
|
||||
warnings.formatwarning = custom_warning_format
|
||||
warnings.filterwarnings("always", category=ResourceWarning)
|
||||
|
||||
|
||||
def _load_tensor_from_url(url, labels):
|
||||
def _load_tensor_from_url(url, labels, timeout=10):
|
||||
"""
|
||||
Downloads a tensor file from a URL and wraps it in a LabelTensor.
|
||||
|
||||
@@ -28,21 +27,24 @@ def _load_tensor_from_url(url, labels):
|
||||
|
||||
:param str url: URL to the remote `.pth` tensor file.
|
||||
:param list[str] | tuple[str] labels: Labels for the resulting LabelTensor.
|
||||
:param int timeout: Timeout for the request in seconds.
|
||||
:return: A LabelTensor object if successful, otherwise None.
|
||||
:rtype: LabelTensor | None
|
||||
"""
|
||||
# Try to download the tensor file from the given URL
|
||||
try:
|
||||
response = requests.get(url)
|
||||
response = requests.get(url, timeout=timeout)
|
||||
response.raise_for_status()
|
||||
tensor = torch.load(
|
||||
BytesIO(response.content), weights_only=False
|
||||
).tensor.detach()
|
||||
return LabelTensor(tensor, labels)
|
||||
except RequestException as e:
|
||||
print(
|
||||
"Could not download data for 'InversePoisson2DSquareProblem' "
|
||||
f"from '{url}'. "
|
||||
f"Reason: {e}. Skipping data loading.",
|
||||
|
||||
# If the request fails, issue a warning and return None
|
||||
except requests.exceptions.RequestException as e:
|
||||
warnings.warn(
|
||||
f"Could not download data for 'InversePoisson2DSquareProblem' "
|
||||
f"from '{url}'. Reason: {e}. Skipping data loading.",
|
||||
ResourceWarning,
|
||||
)
|
||||
return None
|
||||
@@ -66,19 +68,6 @@ def laplace_equation(input_, output_, params_):
|
||||
return delta_u - force_term
|
||||
|
||||
|
||||
# loading data
|
||||
input_url = (
|
||||
"https://github.com/mathLab/PINA/raw/refs/heads/master"
|
||||
"/tutorials/tutorial7/data/pts_0.5_0.5"
|
||||
)
|
||||
output_url = (
|
||||
"https://github.com/mathLab/PINA/raw/refs/heads/master"
|
||||
"/tutorials/tutorial7/data/pinn_solution_0.5_0.5"
|
||||
)
|
||||
input_data = _load_tensor_from_url(input_url, ["x", "y", "mu1", "mu2"])
|
||||
output_data = _load_tensor_from_url(output_url, ["u"])
|
||||
|
||||
|
||||
class InversePoisson2DSquareProblem(SpatialProblem, InverseProblem):
|
||||
r"""
|
||||
Implementation of the inverse 2-dimensional Poisson problem in the square
|
||||
@@ -113,5 +102,50 @@ class InversePoisson2DSquareProblem(SpatialProblem, InverseProblem):
|
||||
"D": Condition(domain="D", equation=Equation(laplace_equation)),
|
||||
}
|
||||
|
||||
if input_data is not None and input_data is not None:
|
||||
conditions["data"] = Condition(input=input_data, target=output_data)
|
||||
def __init__(self, load=True, data_size=1.0):
|
||||
"""
|
||||
Initialization of the :class:`InversePoisson2DSquareProblem`.
|
||||
|
||||
:param bool load: If True, it attempts to load data from remote URLs.
|
||||
Set to False to skip data loading (e.g., if no internet connection).
|
||||
:param float data_size: The fraction of the total data to use for the
|
||||
"data" condition. If set to 1.0, all available data is used.
|
||||
If set to 0.0, no data is used. Default is 1.0.
|
||||
:raises ValueError: If `data_size` is not in the range [0.0, 1.0].
|
||||
:raises ValueError: If `data_size` is not a float.
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
# Check consistency
|
||||
check_consistency(load, bool)
|
||||
check_consistency(data_size, float)
|
||||
if not 0.0 <= data_size <= 1.0:
|
||||
raise ValueError(
|
||||
f"data_size must be in the range [0.0, 1.0], got {data_size}."
|
||||
)
|
||||
|
||||
# Load data if requested
|
||||
if load:
|
||||
|
||||
# Define URLs for input and output data
|
||||
input_url = (
|
||||
"https://github.com/mathLab/PINA/raw/refs/heads/master"
|
||||
"/tutorials/tutorial7/data/pts_0.5_0.5"
|
||||
)
|
||||
output_url = (
|
||||
"https://github.com/mathLab/PINA/raw/refs/heads/master"
|
||||
"/tutorials/tutorial7/data/pinn_solution_0.5_0.5"
|
||||
)
|
||||
|
||||
# Define input and output data
|
||||
input_data = _load_tensor_from_url(
|
||||
input_url, ["x", "y", "mu1", "mu2"]
|
||||
)
|
||||
output_data = _load_tensor_from_url(output_url, ["u"])
|
||||
|
||||
# Add the "data" condition
|
||||
if input_data is not None and output_data is not None:
|
||||
n_data = int(input_data.shape[0] * data_size)
|
||||
self.conditions["data"] = Condition(
|
||||
input=input_data[:n_data], target=output_data[:n_data]
|
||||
)
|
||||
|
||||
@@ -1,12 +1,25 @@
|
||||
from pina.problem.zoo import InversePoisson2DSquareProblem
|
||||
from pina.problem import InverseProblem, SpatialProblem
|
||||
import pytest
|
||||
|
||||
|
||||
def test_constructor():
|
||||
problem = InversePoisson2DSquareProblem()
|
||||
@pytest.mark.parametrize("load", [True, False])
|
||||
@pytest.mark.parametrize("data_size", [0.01, 0.05])
|
||||
def test_constructor(load, data_size):
|
||||
|
||||
# Define the problem with or without loading data
|
||||
problem = InversePoisson2DSquareProblem(load=load, data_size=data_size)
|
||||
|
||||
# Discretise the domain
|
||||
problem.discretise_domain(n=10, mode="random", domains="all")
|
||||
|
||||
# Check if the problem is correctly set up
|
||||
assert problem.are_all_domains_discretised
|
||||
assert isinstance(problem, InverseProblem)
|
||||
assert isinstance(problem, SpatialProblem)
|
||||
assert hasattr(problem, "conditions")
|
||||
assert isinstance(problem.conditions, dict)
|
||||
|
||||
# Should fail if data_size is not in the range [0.0, 1.0]
|
||||
with pytest.raises(ValueError):
|
||||
problem = InversePoisson2DSquareProblem(load=load, data_size=3.0)
|
||||
|
||||
@@ -20,15 +20,9 @@ from torch._dynamo.eval_frame import OptimizedModule
|
||||
# define problems
|
||||
problem = Poisson()
|
||||
problem.discretise_domain(10)
|
||||
inverse_problem = InversePoisson()
|
||||
inverse_problem = InversePoisson(load=True, data_size=0.01)
|
||||
inverse_problem.discretise_domain(10)
|
||||
|
||||
# reduce the number of data points to speed up testing
|
||||
if hasattr(inverse_problem.conditions, "data"):
|
||||
data_condition = inverse_problem.conditions["data"]
|
||||
data_condition.input = data_condition.input[:10]
|
||||
data_condition.target = data_condition.target[:10]
|
||||
|
||||
# add input-output condition to test supervised learning
|
||||
input_pts = torch.rand(10, len(problem.input_variables))
|
||||
input_pts = LabelTensor(input_pts, problem.input_variables)
|
||||
|
||||
@@ -31,15 +31,9 @@ class DummyTimeProblem(TimeDependentProblem):
|
||||
# define problems
|
||||
problem = Poisson()
|
||||
problem.discretise_domain(10)
|
||||
inverse_problem = InversePoisson()
|
||||
inverse_problem = InversePoisson(load=True, data_size=0.01)
|
||||
inverse_problem.discretise_domain(10)
|
||||
|
||||
# reduce the number of data points to speed up testing
|
||||
if hasattr(inverse_problem.conditions, "data"):
|
||||
data_condition = inverse_problem.conditions["data"]
|
||||
data_condition.input = data_condition.input[:10]
|
||||
data_condition.target = data_condition.target[:10]
|
||||
|
||||
# add input-output condition to test supervised learning
|
||||
input_pts = torch.rand(10, len(problem.input_variables))
|
||||
input_pts = LabelTensor(input_pts, problem.input_variables)
|
||||
|
||||
@@ -20,15 +20,9 @@ from torch._dynamo.eval_frame import OptimizedModule
|
||||
# define problems
|
||||
problem = Poisson()
|
||||
problem.discretise_domain(10)
|
||||
inverse_problem = InversePoisson()
|
||||
inverse_problem = InversePoisson(load=True, data_size=0.01)
|
||||
inverse_problem.discretise_domain(10)
|
||||
|
||||
# reduce the number of data points to speed up testing
|
||||
if hasattr(inverse_problem.conditions, "data"):
|
||||
data_condition = inverse_problem.conditions["data"]
|
||||
data_condition.input = data_condition.input[:10]
|
||||
data_condition.target = data_condition.target[:10]
|
||||
|
||||
# add input-output condition to test supervised learning
|
||||
input_pts = torch.rand(10, len(problem.input_variables))
|
||||
input_pts = LabelTensor(input_pts, problem.input_variables)
|
||||
|
||||
@@ -19,15 +19,9 @@ from torch._dynamo.eval_frame import OptimizedModule
|
||||
# define problems
|
||||
problem = Poisson()
|
||||
problem.discretise_domain(10)
|
||||
inverse_problem = InversePoisson()
|
||||
inverse_problem = InversePoisson(load=True, data_size=0.01)
|
||||
inverse_problem.discretise_domain(10)
|
||||
|
||||
# reduce the number of data points to speed up testing
|
||||
if hasattr(inverse_problem.conditions, "data"):
|
||||
data_condition = inverse_problem.conditions["data"]
|
||||
data_condition.input = data_condition.input[:10]
|
||||
data_condition.target = data_condition.target[:10]
|
||||
|
||||
# add input-output condition to test supervised learning
|
||||
input_pts = torch.rand(10, len(problem.input_variables))
|
||||
input_pts = LabelTensor(input_pts, problem.input_variables)
|
||||
|
||||
@@ -20,15 +20,9 @@ from torch._dynamo.eval_frame import OptimizedModule
|
||||
# define problems
|
||||
problem = Poisson()
|
||||
problem.discretise_domain(10)
|
||||
inverse_problem = InversePoisson()
|
||||
inverse_problem = InversePoisson(load=True, data_size=0.01)
|
||||
inverse_problem.discretise_domain(10)
|
||||
|
||||
# reduce the number of data points to speed up testing
|
||||
if hasattr(inverse_problem.conditions, "data"):
|
||||
data_condition = inverse_problem.conditions["data"]
|
||||
data_condition.input = data_condition.input[:10]
|
||||
data_condition.target = data_condition.target[:10]
|
||||
|
||||
# add input-output condition to test supervised learning
|
||||
input_pts = torch.rand(10, len(problem.input_variables))
|
||||
input_pts = LabelTensor(input_pts, problem.input_variables)
|
||||
|
||||
Reference in New Issue
Block a user