add spline model (#321)
* add spline model * add tests for splines * rst files for splines --------- Co-authored-by: AleDinve <giuseppealessio.d@student.unisi.it> Co-authored-by: dario-coscia <dariocos99@gmail.com>
This commit is contained in:
@@ -9,6 +9,7 @@ __all__ = [
|
||||
"KernelNeuralOperator",
|
||||
"AveragingNeuralOperator",
|
||||
"LowRankNeuralOperator",
|
||||
"Spline",
|
||||
]
|
||||
|
||||
from .feed_forward import FeedForward, ResidualFeedForward
|
||||
@@ -18,3 +19,4 @@ from .fno import FNO, FourierIntegralKernel
|
||||
from .base_no import KernelNeuralOperator
|
||||
from .avno import AveragingNeuralOperator
|
||||
from .lno import LowRankNeuralOperator
|
||||
from .spline import Spline
|
||||
166
pina/model/spline.py
Normal file
166
pina/model/spline.py
Normal file
@@ -0,0 +1,166 @@
|
||||
"""Module for Spline model"""
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from ..utils import check_consistency
|
||||
|
||||
class Spline(torch.nn.Module):
|
||||
|
||||
def __init__(self, order=4, knots=None, control_points=None) -> None:
|
||||
"""
|
||||
Spline model.
|
||||
|
||||
:param int order: the order of the spline.
|
||||
:param torch.Tensor knots: the knot vector.
|
||||
:param torch.Tensor control_points: the control points.
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
check_consistency(order, int)
|
||||
|
||||
if order < 0:
|
||||
raise ValueError("Spline order cannot be negative.")
|
||||
if knots is None and control_points is None:
|
||||
raise ValueError("Knots and control points cannot be both None.")
|
||||
|
||||
self.order = order
|
||||
self.k = order - 1
|
||||
|
||||
if knots is not None and control_points is not None:
|
||||
self.knots = knots
|
||||
self.control_points = control_points
|
||||
|
||||
elif knots is not None:
|
||||
print('Warning: control points will be initialized automatically.')
|
||||
print(' experimental feature')
|
||||
|
||||
self.knots = knots
|
||||
n = len(knots) - order
|
||||
self.control_points = torch.nn.Parameter(
|
||||
torch.zeros(n), requires_grad=True)
|
||||
|
||||
elif control_points is not None:
|
||||
print('Warning: knots will be initialized automatically.')
|
||||
print(' experimental feature')
|
||||
|
||||
self.control_points = control_points
|
||||
|
||||
n = len(self.control_points)-1
|
||||
self.knots = {
|
||||
'type': 'auto',
|
||||
'min': 0,
|
||||
'max': 1,
|
||||
'n': n+2+self.order}
|
||||
|
||||
else:
|
||||
raise ValueError(
|
||||
"Knots and control points cannot be both None."
|
||||
)
|
||||
|
||||
|
||||
if self.knots.ndim != 1:
|
||||
raise ValueError("Knot vector must be one-dimensional.")
|
||||
|
||||
def basis(self, x, k, i, t):
|
||||
'''
|
||||
Recursive function to compute the basis functions of the spline.
|
||||
|
||||
:param torch.Tensor x: points to be evaluated.
|
||||
:param int k: spline degree
|
||||
:param int i: the index of the interval
|
||||
:param torch.Tensor t: vector of knots
|
||||
:return: the basis functions evaluated at x
|
||||
:rtype: torch.Tensor
|
||||
'''
|
||||
|
||||
if k == 0:
|
||||
a = torch.where(torch.logical_and(t[i] <= x, x < t[i+1]), 1.0, 0.0)
|
||||
if i == len(t) - self.order - 1:
|
||||
a = torch.where(x == t[-1], 1.0, a)
|
||||
a.requires_grad_(True)
|
||||
return a
|
||||
|
||||
|
||||
if t[i+k] == t[i]:
|
||||
c1 = torch.tensor([0.0]*len(x), requires_grad=True)
|
||||
else:
|
||||
c1 = (x - t[i])/(t[i+k] - t[i]) * self.basis(x, k-1, i, t)
|
||||
|
||||
if t[i+k+1] == t[i+1]:
|
||||
c2 = torch.tensor([0.0]*len(x), requires_grad=True)
|
||||
else:
|
||||
c2 = (t[i+k+1] - x)/(t[i+k+1] - t[i+1]) * self.basis(x, k-1, i+1, t)
|
||||
|
||||
return c1 + c2
|
||||
|
||||
|
||||
@property
|
||||
def control_points(self):
|
||||
return self._control_points
|
||||
|
||||
@control_points.setter
|
||||
def control_points(self, value):
|
||||
if isinstance(value, dict):
|
||||
if 'n' not in value:
|
||||
raise ValueError('Invalid value for control_points')
|
||||
n = value['n']
|
||||
dim = value.get('dim', 1)
|
||||
value = torch.zeros(n, dim)
|
||||
|
||||
if not isinstance(value, torch.Tensor):
|
||||
raise ValueError('Invalid value for control_points')
|
||||
self._control_points = torch.nn.Parameter(value, requires_grad=True)
|
||||
|
||||
@property
|
||||
def knots(self):
|
||||
return self._knots
|
||||
|
||||
@knots.setter
|
||||
def knots(self, value):
|
||||
if isinstance(value, dict):
|
||||
|
||||
type_ = value.get('type', 'auto')
|
||||
min_ = value.get('min', 0)
|
||||
max_ = value.get('max', 1)
|
||||
n = value.get('n', 10)
|
||||
|
||||
if type_ == 'uniform':
|
||||
value = torch.linspace(min_, max_, n + self.k + 1)
|
||||
elif type_ == 'auto':
|
||||
initial_knots = torch.ones(self.order+1)*min_
|
||||
final_knots = torch.ones(self.order+1)*max_
|
||||
|
||||
if n < self.order + 1:
|
||||
value = torch.concatenate((initial_knots, final_knots))
|
||||
elif n - 2*self.order + 1 == 1:
|
||||
value = torch.Tensor([(max_ + min_)/2])
|
||||
else:
|
||||
value = torch.linspace(min_, max_, n - 2*self.order - 1)
|
||||
|
||||
value = torch.concatenate(
|
||||
(
|
||||
initial_knots, value, final_knots
|
||||
)
|
||||
)
|
||||
|
||||
if not isinstance(value, torch.Tensor):
|
||||
raise ValueError('Invalid value for knots')
|
||||
|
||||
self._knots = value
|
||||
|
||||
def forward(self, x_):
|
||||
"""
|
||||
Forward pass of the spline model.
|
||||
|
||||
:param torch.Tensor x_: points to be evaluated.
|
||||
:return: the spline evaluated at x_
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
t = self.knots
|
||||
k = self.k
|
||||
c = self.control_points
|
||||
|
||||
basis = map(lambda i: self.basis(x_, k, i, t)[:, None], range(len(c)))
|
||||
y = (torch.cat(list(basis), dim=1) * c).sum(axis=1)
|
||||
|
||||
return y
|
||||
Reference in New Issue
Block a user