fix data pipeline and add separeate_conditions option
This commit is contained in:
@@ -7,52 +7,11 @@ different types of Datasets defined in PINA.
|
||||
import warnings
|
||||
from lightning.pytorch import LightningDataModule
|
||||
import torch
|
||||
from torch_geometric.data import Data
|
||||
from torch.utils.data import DataLoader, SequentialSampler, RandomSampler
|
||||
from torch.utils.data.distributed import DistributedSampler
|
||||
from ..label_tensor import LabelTensor
|
||||
from .dataset import PinaDatasetFactory
|
||||
from .dataloader import PinaDataLoader
|
||||
|
||||
|
||||
class PinaSampler:
|
||||
"""
|
||||
This class is used to create the sampler instance based on the shuffle
|
||||
parameter and the environment in which the code is running.
|
||||
"""
|
||||
|
||||
def __new__(cls, dataset):
|
||||
"""
|
||||
Instantiate and initialize the sampler.
|
||||
|
||||
:param PinaDataset dataset: The dataset from which to sample.
|
||||
:return: The sampler instance.
|
||||
:rtype: :class:`torch.utils.data.Sampler`
|
||||
"""
|
||||
|
||||
if (
|
||||
torch.distributed.is_available()
|
||||
and torch.distributed.is_initialized()
|
||||
):
|
||||
sampler = DistributedSampler(dataset)
|
||||
else:
|
||||
sampler = SequentialSampler(dataset)
|
||||
return sampler
|
||||
|
||||
|
||||
def DataloaderCollector():
|
||||
|
||||
def __init__(self, dataloader_list):
|
||||
"""
|
||||
Initialize the object.
|
||||
"""
|
||||
assert isinstance(dataloader_list, list)
|
||||
assert all(
|
||||
isinstance(dataloader, DataLoader) for dataloader in dataloader_list
|
||||
)
|
||||
self.dataloader_list = dataloader_list
|
||||
|
||||
|
||||
class PinaDataModule(LightningDataModule):
|
||||
"""
|
||||
This class extends :class:`~lightning.pytorch.core.LightningDataModule`,
|
||||
@@ -68,7 +27,8 @@ class PinaDataModule(LightningDataModule):
|
||||
val_size=0.1,
|
||||
batch_size=None,
|
||||
shuffle=True,
|
||||
repeat=False,
|
||||
common_batch_size=True,
|
||||
separate_conditions=False,
|
||||
automatic_batching=None,
|
||||
num_workers=0,
|
||||
pin_memory=False,
|
||||
@@ -89,11 +49,12 @@ class PinaDataModule(LightningDataModule):
|
||||
Default is ``None``.
|
||||
:param bool shuffle: Whether to shuffle the dataset before splitting.
|
||||
Default ``True``.
|
||||
:param bool repeat: If ``True``, in case of batch size larger than the
|
||||
number of elements in a specific condition, the elements are
|
||||
repeated until the batch size is reached. If ``False``, the number
|
||||
of elements in the batch is the minimum between the batch size and
|
||||
the number of elements in the condition. Default is ``False``.
|
||||
:param bool common_batch_size: If ``True``, the same batch size is used
|
||||
for all conditions. If ``False``, each condition can have its own
|
||||
batch size, proportional to the size of the dataset in that
|
||||
condition. Default is ``True``.
|
||||
:param bool separate_conditions: If ``True``, dataloaders for each
|
||||
condition are iterated separately. Default is ``False``.
|
||||
:param automatic_batching: If ``True``, automatic PyTorch batching
|
||||
is performed, which consists of extracting one element at a time
|
||||
from the dataset and collating them into a batch. This is useful
|
||||
@@ -123,7 +84,8 @@ class PinaDataModule(LightningDataModule):
|
||||
# Store fixed attributes
|
||||
self.batch_size = batch_size
|
||||
self.shuffle = shuffle
|
||||
self.repeat = repeat
|
||||
self.common_batch_size = common_batch_size
|
||||
self.separate_conditions = separate_conditions
|
||||
self.automatic_batching = automatic_batching
|
||||
|
||||
# If batch size is None, num_workers has no effect
|
||||
@@ -194,23 +156,16 @@ class PinaDataModule(LightningDataModule):
|
||||
if stage == "fit" or stage is None:
|
||||
self.train_dataset = PinaDatasetFactory(
|
||||
self.data_splits["train"],
|
||||
# max_conditions_lengths=self.find_max_conditions_lengths(
|
||||
# "train"
|
||||
# ),
|
||||
automatic_batching=self.automatic_batching,
|
||||
)
|
||||
if "val" in self.data_splits.keys():
|
||||
self.val_dataset = PinaDatasetFactory(
|
||||
self.data_splits["val"],
|
||||
# max_conditions_lengths=self.find_max_conditions_lengths(
|
||||
# "val"
|
||||
# ),
|
||||
automatic_batching=self.automatic_batching,
|
||||
)
|
||||
elif stage == "test":
|
||||
self.test_dataset = PinaDatasetFactory(
|
||||
self.data_splits["test"],
|
||||
# max_conditions_lengths=self.find_max_conditions_lengths("test"),
|
||||
automatic_batching=self.automatic_batching,
|
||||
)
|
||||
else:
|
||||
@@ -326,30 +281,10 @@ class PinaDataModule(LightningDataModule):
|
||||
shuffle=self.shuffle,
|
||||
num_workers=self.num_workers,
|
||||
collate_fn=None,
|
||||
common_batch_size=True,
|
||||
common_batch_size=self.common_batch_size,
|
||||
separate_conditions=self.separate_conditions,
|
||||
)
|
||||
|
||||
def find_max_conditions_lengths(self, split):
|
||||
"""
|
||||
Define the maximum length for each conditions.
|
||||
|
||||
:param dict split: The split of the dataset.
|
||||
:return: The maximum length per condition.
|
||||
:rtype: dict
|
||||
"""
|
||||
|
||||
max_conditions_lengths = {}
|
||||
for k, v in self.data_splits[split].items():
|
||||
if self.batch_size is None:
|
||||
max_conditions_lengths[k] = len(v["input"])
|
||||
elif self.repeat:
|
||||
max_conditions_lengths[k] = self.batch_size
|
||||
else:
|
||||
max_conditions_lengths[k] = min(
|
||||
len(v["input"]), self.batch_size
|
||||
)
|
||||
return max_conditions_lengths
|
||||
|
||||
def val_dataloader(self):
|
||||
"""
|
||||
Create the validation dataloader.
|
||||
|
||||
@@ -127,14 +127,14 @@ class PinaDataLoader:
|
||||
num_workers=0,
|
||||
collate_fn=None,
|
||||
common_batch_size=True,
|
||||
separate_conditions=False,
|
||||
):
|
||||
self.dataset_dict = dataset_dict
|
||||
self.batch_size = batch_size
|
||||
self.shuffle = shuffle
|
||||
self.num_workers = num_workers
|
||||
self.collate_fn = collate_fn
|
||||
|
||||
print(batch_size)
|
||||
self.separate_conditions = separate_conditions
|
||||
|
||||
if batch_size is None:
|
||||
batch_size_per_dataset = {
|
||||
@@ -211,6 +211,8 @@ class PinaDataLoader:
|
||||
)
|
||||
|
||||
def __len__(self):
|
||||
if self.separate_conditions:
|
||||
return sum(len(dl) for dl in self.dataloaders.values())
|
||||
return max(len(dl) for dl in self.dataloaders.values())
|
||||
|
||||
def __iter__(self):
|
||||
@@ -220,26 +222,21 @@ class PinaDataLoader:
|
||||
Itera per un numero di passi pari al dataloader più lungo (come da __len__)
|
||||
e fa ricominciare i dataloader più corti quando si esauriscono.
|
||||
"""
|
||||
# 1. Crea un iteratore per ogni dataloader
|
||||
if self.separate_conditions:
|
||||
for split, dl in self.dataloaders.items():
|
||||
for batch in dl:
|
||||
yield {split: batch}
|
||||
return
|
||||
|
||||
iterators = {split: iter(dl) for split, dl in self.dataloaders.items()}
|
||||
|
||||
# 2. Itera per il numero di batch del dataloader più lungo
|
||||
for _ in range(len(self)):
|
||||
|
||||
# 3. Prepara il dizionario di batch per questo step
|
||||
batch_dict = {}
|
||||
|
||||
# 4. Ottieni il prossimo batch da ogni iteratore
|
||||
for split, it in iterators.items():
|
||||
try:
|
||||
batch = next(it)
|
||||
except StopIteration:
|
||||
# 5. Se un iteratore è esaurito, resettalo e prendi il primo batch
|
||||
new_it = iter(self.dataloaders[split])
|
||||
iterators[split] = new_it # Salva il nuovo iteratore
|
||||
iterators[split] = new_it
|
||||
batch = next(new_it)
|
||||
|
||||
batch_dict[split] = batch
|
||||
|
||||
# 6. Restituisci il dizionario di batch
|
||||
yield batch_dict
|
||||
|
||||
@@ -1,41 +1,20 @@
|
||||
"""Module for the PINA dataset classes."""
|
||||
|
||||
import torch
|
||||
from torch.utils.data import Dataset
|
||||
from torch_geometric.data import Data
|
||||
from ..graph import Graph, LabelBatch
|
||||
from ..label_tensor import LabelTensor
|
||||
import torch
|
||||
|
||||
|
||||
class PinaDatasetFactory:
|
||||
"""
|
||||
Factory class for the PINA dataset.
|
||||
|
||||
Depending on the data type inside the conditions, it instanciate an object
|
||||
belonging to the appropriate subclass of
|
||||
:class:`~pina.data.dataset.PinaDataset`. The possible subclasses are:
|
||||
|
||||
- :class:`~pina.data.dataset.PinaTensorDataset`, for handling \
|
||||
:class:`torch.Tensor` and :class:`~pina.label_tensor.LabelTensor` data.
|
||||
- :class:`~pina.data.dataset.PinaGraphDataset`, for handling \
|
||||
:class:`~pina.graph.Graph` and :class:`~torch_geometric.data.Data` data.
|
||||
TODO: Update docstring
|
||||
"""
|
||||
|
||||
def __new__(cls, conditions_dict, **kwargs):
|
||||
"""
|
||||
Instantiate the appropriate subclass of
|
||||
:class:`~pina.data.dataset.PinaDataset`.
|
||||
|
||||
If a graph is present in the conditions, returns a
|
||||
:class:`~pina.data.dataset.PinaGraphDataset`, otherwise returns a
|
||||
:class:`~pina.data.dataset.PinaTensorDataset`.
|
||||
|
||||
:param dict conditions_dict: Dictionary containing all the conditions
|
||||
to be included in the dataset instance.
|
||||
:return: A subclass of :class:`~pina.data.dataset.PinaDataset`.
|
||||
:rtype: PinaTensorDataset | PinaGraphDataset
|
||||
|
||||
:raises ValueError: If an empty dictionary is provided.
|
||||
TODO: Update docstring
|
||||
"""
|
||||
|
||||
# Check if conditions_dict is empty
|
||||
@@ -50,28 +29,11 @@ class PinaDatasetFactory:
|
||||
raise ValueError(
|
||||
f"Condition '{name}' data must be a dictionary"
|
||||
)
|
||||
|
||||
# is_graph = cls._is_graph_dataset(conditions_dict)
|
||||
# if is_graph:
|
||||
# raise NotImplementedError("PinaGraphDataset is not implemented yet.")
|
||||
|
||||
dataset_dict[name] = PinaTensorDataset(data, **kwargs)
|
||||
dataset_dict[name] = PinaDataset(data, **kwargs)
|
||||
return dataset_dict
|
||||
|
||||
@staticmethod
|
||||
def _is_graph_dataset(cond_data):
|
||||
"""
|
||||
TODO: Docstring
|
||||
"""
|
||||
|
||||
# Iterate over the values of the current condition
|
||||
for cond in cond_data.values():
|
||||
if isinstance(cond, (Data, Graph, list, tuple)):
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
class PinaTensorDataset(Dataset):
|
||||
class PinaDataset(Dataset):
|
||||
"""
|
||||
Dataset class for the PINA dataset with :class:`torch.Tensor` and
|
||||
:class:`~pina.label_tensor.LabelTensor` data.
|
||||
@@ -91,9 +53,8 @@ class PinaTensorDataset(Dataset):
|
||||
self.automatic_batching = (
|
||||
automatic_batching if automatic_batching is not None else True
|
||||
)
|
||||
self.stack_fn = (
|
||||
{}
|
||||
) # LabelTensor.stack if any(isinstance(v, LabelTensor) for v in data_dict.values()) else torch.stack
|
||||
self.stack_fn = {}
|
||||
# Determine stacking functions for each data type (used in collate_fn)
|
||||
for k, v in data_dict.items():
|
||||
if isinstance(v, LabelTensor):
|
||||
self.stack_fn[k] = LabelTensor.stack
|
||||
|
||||
Reference in New Issue
Block a user