fix data pipeline and add separeate_conditions option
This commit is contained in:
@@ -7,52 +7,11 @@ different types of Datasets defined in PINA.
|
||||
import warnings
|
||||
from lightning.pytorch import LightningDataModule
|
||||
import torch
|
||||
from torch_geometric.data import Data
|
||||
from torch.utils.data import DataLoader, SequentialSampler, RandomSampler
|
||||
from torch.utils.data.distributed import DistributedSampler
|
||||
from ..label_tensor import LabelTensor
|
||||
from .dataset import PinaDatasetFactory
|
||||
from .dataloader import PinaDataLoader
|
||||
|
||||
|
||||
class PinaSampler:
|
||||
"""
|
||||
This class is used to create the sampler instance based on the shuffle
|
||||
parameter and the environment in which the code is running.
|
||||
"""
|
||||
|
||||
def __new__(cls, dataset):
|
||||
"""
|
||||
Instantiate and initialize the sampler.
|
||||
|
||||
:param PinaDataset dataset: The dataset from which to sample.
|
||||
:return: The sampler instance.
|
||||
:rtype: :class:`torch.utils.data.Sampler`
|
||||
"""
|
||||
|
||||
if (
|
||||
torch.distributed.is_available()
|
||||
and torch.distributed.is_initialized()
|
||||
):
|
||||
sampler = DistributedSampler(dataset)
|
||||
else:
|
||||
sampler = SequentialSampler(dataset)
|
||||
return sampler
|
||||
|
||||
|
||||
def DataloaderCollector():
|
||||
|
||||
def __init__(self, dataloader_list):
|
||||
"""
|
||||
Initialize the object.
|
||||
"""
|
||||
assert isinstance(dataloader_list, list)
|
||||
assert all(
|
||||
isinstance(dataloader, DataLoader) for dataloader in dataloader_list
|
||||
)
|
||||
self.dataloader_list = dataloader_list
|
||||
|
||||
|
||||
class PinaDataModule(LightningDataModule):
|
||||
"""
|
||||
This class extends :class:`~lightning.pytorch.core.LightningDataModule`,
|
||||
@@ -68,7 +27,8 @@ class PinaDataModule(LightningDataModule):
|
||||
val_size=0.1,
|
||||
batch_size=None,
|
||||
shuffle=True,
|
||||
repeat=False,
|
||||
common_batch_size=True,
|
||||
separate_conditions=False,
|
||||
automatic_batching=None,
|
||||
num_workers=0,
|
||||
pin_memory=False,
|
||||
@@ -89,11 +49,12 @@ class PinaDataModule(LightningDataModule):
|
||||
Default is ``None``.
|
||||
:param bool shuffle: Whether to shuffle the dataset before splitting.
|
||||
Default ``True``.
|
||||
:param bool repeat: If ``True``, in case of batch size larger than the
|
||||
number of elements in a specific condition, the elements are
|
||||
repeated until the batch size is reached. If ``False``, the number
|
||||
of elements in the batch is the minimum between the batch size and
|
||||
the number of elements in the condition. Default is ``False``.
|
||||
:param bool common_batch_size: If ``True``, the same batch size is used
|
||||
for all conditions. If ``False``, each condition can have its own
|
||||
batch size, proportional to the size of the dataset in that
|
||||
condition. Default is ``True``.
|
||||
:param bool separate_conditions: If ``True``, dataloaders for each
|
||||
condition are iterated separately. Default is ``False``.
|
||||
:param automatic_batching: If ``True``, automatic PyTorch batching
|
||||
is performed, which consists of extracting one element at a time
|
||||
from the dataset and collating them into a batch. This is useful
|
||||
@@ -123,7 +84,8 @@ class PinaDataModule(LightningDataModule):
|
||||
# Store fixed attributes
|
||||
self.batch_size = batch_size
|
||||
self.shuffle = shuffle
|
||||
self.repeat = repeat
|
||||
self.common_batch_size = common_batch_size
|
||||
self.separate_conditions = separate_conditions
|
||||
self.automatic_batching = automatic_batching
|
||||
|
||||
# If batch size is None, num_workers has no effect
|
||||
@@ -194,23 +156,16 @@ class PinaDataModule(LightningDataModule):
|
||||
if stage == "fit" or stage is None:
|
||||
self.train_dataset = PinaDatasetFactory(
|
||||
self.data_splits["train"],
|
||||
# max_conditions_lengths=self.find_max_conditions_lengths(
|
||||
# "train"
|
||||
# ),
|
||||
automatic_batching=self.automatic_batching,
|
||||
)
|
||||
if "val" in self.data_splits.keys():
|
||||
self.val_dataset = PinaDatasetFactory(
|
||||
self.data_splits["val"],
|
||||
# max_conditions_lengths=self.find_max_conditions_lengths(
|
||||
# "val"
|
||||
# ),
|
||||
automatic_batching=self.automatic_batching,
|
||||
)
|
||||
elif stage == "test":
|
||||
self.test_dataset = PinaDatasetFactory(
|
||||
self.data_splits["test"],
|
||||
# max_conditions_lengths=self.find_max_conditions_lengths("test"),
|
||||
automatic_batching=self.automatic_batching,
|
||||
)
|
||||
else:
|
||||
@@ -326,30 +281,10 @@ class PinaDataModule(LightningDataModule):
|
||||
shuffle=self.shuffle,
|
||||
num_workers=self.num_workers,
|
||||
collate_fn=None,
|
||||
common_batch_size=True,
|
||||
common_batch_size=self.common_batch_size,
|
||||
separate_conditions=self.separate_conditions,
|
||||
)
|
||||
|
||||
def find_max_conditions_lengths(self, split):
|
||||
"""
|
||||
Define the maximum length for each conditions.
|
||||
|
||||
:param dict split: The split of the dataset.
|
||||
:return: The maximum length per condition.
|
||||
:rtype: dict
|
||||
"""
|
||||
|
||||
max_conditions_lengths = {}
|
||||
for k, v in self.data_splits[split].items():
|
||||
if self.batch_size is None:
|
||||
max_conditions_lengths[k] = len(v["input"])
|
||||
elif self.repeat:
|
||||
max_conditions_lengths[k] = self.batch_size
|
||||
else:
|
||||
max_conditions_lengths[k] = min(
|
||||
len(v["input"]), self.batch_size
|
||||
)
|
||||
return max_conditions_lengths
|
||||
|
||||
def val_dataloader(self):
|
||||
"""
|
||||
Create the validation dataloader.
|
||||
|
||||
Reference in New Issue
Block a user