fix data pipeline and add separeate_conditions option
This commit is contained in:
@@ -1,41 +1,20 @@
|
||||
"""Module for the PINA dataset classes."""
|
||||
|
||||
import torch
|
||||
from torch.utils.data import Dataset
|
||||
from torch_geometric.data import Data
|
||||
from ..graph import Graph, LabelBatch
|
||||
from ..label_tensor import LabelTensor
|
||||
import torch
|
||||
|
||||
|
||||
class PinaDatasetFactory:
|
||||
"""
|
||||
Factory class for the PINA dataset.
|
||||
|
||||
Depending on the data type inside the conditions, it instanciate an object
|
||||
belonging to the appropriate subclass of
|
||||
:class:`~pina.data.dataset.PinaDataset`. The possible subclasses are:
|
||||
|
||||
- :class:`~pina.data.dataset.PinaTensorDataset`, for handling \
|
||||
:class:`torch.Tensor` and :class:`~pina.label_tensor.LabelTensor` data.
|
||||
- :class:`~pina.data.dataset.PinaGraphDataset`, for handling \
|
||||
:class:`~pina.graph.Graph` and :class:`~torch_geometric.data.Data` data.
|
||||
TODO: Update docstring
|
||||
"""
|
||||
|
||||
def __new__(cls, conditions_dict, **kwargs):
|
||||
"""
|
||||
Instantiate the appropriate subclass of
|
||||
:class:`~pina.data.dataset.PinaDataset`.
|
||||
|
||||
If a graph is present in the conditions, returns a
|
||||
:class:`~pina.data.dataset.PinaGraphDataset`, otherwise returns a
|
||||
:class:`~pina.data.dataset.PinaTensorDataset`.
|
||||
|
||||
:param dict conditions_dict: Dictionary containing all the conditions
|
||||
to be included in the dataset instance.
|
||||
:return: A subclass of :class:`~pina.data.dataset.PinaDataset`.
|
||||
:rtype: PinaTensorDataset | PinaGraphDataset
|
||||
|
||||
:raises ValueError: If an empty dictionary is provided.
|
||||
TODO: Update docstring
|
||||
"""
|
||||
|
||||
# Check if conditions_dict is empty
|
||||
@@ -50,28 +29,11 @@ class PinaDatasetFactory:
|
||||
raise ValueError(
|
||||
f"Condition '{name}' data must be a dictionary"
|
||||
)
|
||||
|
||||
# is_graph = cls._is_graph_dataset(conditions_dict)
|
||||
# if is_graph:
|
||||
# raise NotImplementedError("PinaGraphDataset is not implemented yet.")
|
||||
|
||||
dataset_dict[name] = PinaTensorDataset(data, **kwargs)
|
||||
dataset_dict[name] = PinaDataset(data, **kwargs)
|
||||
return dataset_dict
|
||||
|
||||
@staticmethod
|
||||
def _is_graph_dataset(cond_data):
|
||||
"""
|
||||
TODO: Docstring
|
||||
"""
|
||||
|
||||
# Iterate over the values of the current condition
|
||||
for cond in cond_data.values():
|
||||
if isinstance(cond, (Data, Graph, list, tuple)):
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
class PinaTensorDataset(Dataset):
|
||||
class PinaDataset(Dataset):
|
||||
"""
|
||||
Dataset class for the PINA dataset with :class:`torch.Tensor` and
|
||||
:class:`~pina.label_tensor.LabelTensor` data.
|
||||
@@ -91,9 +53,8 @@ class PinaTensorDataset(Dataset):
|
||||
self.automatic_batching = (
|
||||
automatic_batching if automatic_batching is not None else True
|
||||
)
|
||||
self.stack_fn = (
|
||||
{}
|
||||
) # LabelTensor.stack if any(isinstance(v, LabelTensor) for v in data_dict.values()) else torch.stack
|
||||
self.stack_fn = {}
|
||||
# Determine stacking functions for each data type (used in collate_fn)
|
||||
for k, v in data_dict.items():
|
||||
if isinstance(v, LabelTensor):
|
||||
self.stack_fn[k] = LabelTensor.stack
|
||||
|
||||
Reference in New Issue
Block a user