fix data pipeline and add separeate_conditions option

This commit is contained in:
FilippoOlivo
2025-11-12 15:59:28 +01:00
parent 99e2f07cf7
commit 4d172a8821
3 changed files with 30 additions and 137 deletions

View File

@@ -7,52 +7,11 @@ different types of Datasets defined in PINA.
import warnings
from lightning.pytorch import LightningDataModule
import torch
from torch_geometric.data import Data
from torch.utils.data import DataLoader, SequentialSampler, RandomSampler
from torch.utils.data.distributed import DistributedSampler
from ..label_tensor import LabelTensor
from .dataset import PinaDatasetFactory
from .dataloader import PinaDataLoader
class PinaSampler:
"""
This class is used to create the sampler instance based on the shuffle
parameter and the environment in which the code is running.
"""
def __new__(cls, dataset):
"""
Instantiate and initialize the sampler.
:param PinaDataset dataset: The dataset from which to sample.
:return: The sampler instance.
:rtype: :class:`torch.utils.data.Sampler`
"""
if (
torch.distributed.is_available()
and torch.distributed.is_initialized()
):
sampler = DistributedSampler(dataset)
else:
sampler = SequentialSampler(dataset)
return sampler
def DataloaderCollector():
def __init__(self, dataloader_list):
"""
Initialize the object.
"""
assert isinstance(dataloader_list, list)
assert all(
isinstance(dataloader, DataLoader) for dataloader in dataloader_list
)
self.dataloader_list = dataloader_list
class PinaDataModule(LightningDataModule):
"""
This class extends :class:`~lightning.pytorch.core.LightningDataModule`,
@@ -68,7 +27,8 @@ class PinaDataModule(LightningDataModule):
val_size=0.1,
batch_size=None,
shuffle=True,
repeat=False,
common_batch_size=True,
separate_conditions=False,
automatic_batching=None,
num_workers=0,
pin_memory=False,
@@ -89,11 +49,12 @@ class PinaDataModule(LightningDataModule):
Default is ``None``.
:param bool shuffle: Whether to shuffle the dataset before splitting.
Default ``True``.
:param bool repeat: If ``True``, in case of batch size larger than the
number of elements in a specific condition, the elements are
repeated until the batch size is reached. If ``False``, the number
of elements in the batch is the minimum between the batch size and
the number of elements in the condition. Default is ``False``.
:param bool common_batch_size: If ``True``, the same batch size is used
for all conditions. If ``False``, each condition can have its own
batch size, proportional to the size of the dataset in that
condition. Default is ``True``.
:param bool separate_conditions: If ``True``, dataloaders for each
condition are iterated separately. Default is ``False``.
:param automatic_batching: If ``True``, automatic PyTorch batching
is performed, which consists of extracting one element at a time
from the dataset and collating them into a batch. This is useful
@@ -123,7 +84,8 @@ class PinaDataModule(LightningDataModule):
# Store fixed attributes
self.batch_size = batch_size
self.shuffle = shuffle
self.repeat = repeat
self.common_batch_size = common_batch_size
self.separate_conditions = separate_conditions
self.automatic_batching = automatic_batching
# If batch size is None, num_workers has no effect
@@ -194,23 +156,16 @@ class PinaDataModule(LightningDataModule):
if stage == "fit" or stage is None:
self.train_dataset = PinaDatasetFactory(
self.data_splits["train"],
# max_conditions_lengths=self.find_max_conditions_lengths(
# "train"
# ),
automatic_batching=self.automatic_batching,
)
if "val" in self.data_splits.keys():
self.val_dataset = PinaDatasetFactory(
self.data_splits["val"],
# max_conditions_lengths=self.find_max_conditions_lengths(
# "val"
# ),
automatic_batching=self.automatic_batching,
)
elif stage == "test":
self.test_dataset = PinaDatasetFactory(
self.data_splits["test"],
# max_conditions_lengths=self.find_max_conditions_lengths("test"),
automatic_batching=self.automatic_batching,
)
else:
@@ -326,30 +281,10 @@ class PinaDataModule(LightningDataModule):
shuffle=self.shuffle,
num_workers=self.num_workers,
collate_fn=None,
common_batch_size=True,
common_batch_size=self.common_batch_size,
separate_conditions=self.separate_conditions,
)
def find_max_conditions_lengths(self, split):
"""
Define the maximum length for each conditions.
:param dict split: The split of the dataset.
:return: The maximum length per condition.
:rtype: dict
"""
max_conditions_lengths = {}
for k, v in self.data_splits[split].items():
if self.batch_size is None:
max_conditions_lengths[k] = len(v["input"])
elif self.repeat:
max_conditions_lengths[k] = self.batch_size
else:
max_conditions_lengths[k] = min(
len(v["input"]), self.batch_size
)
return max_conditions_lengths
def val_dataloader(self):
"""
Create the validation dataloader.

View File

@@ -127,14 +127,14 @@ class PinaDataLoader:
num_workers=0,
collate_fn=None,
common_batch_size=True,
separate_conditions=False,
):
self.dataset_dict = dataset_dict
self.batch_size = batch_size
self.shuffle = shuffle
self.num_workers = num_workers
self.collate_fn = collate_fn
print(batch_size)
self.separate_conditions = separate_conditions
if batch_size is None:
batch_size_per_dataset = {
@@ -211,6 +211,8 @@ class PinaDataLoader:
)
def __len__(self):
if self.separate_conditions:
return sum(len(dl) for dl in self.dataloaders.values())
return max(len(dl) for dl in self.dataloaders.values())
def __iter__(self):
@@ -220,26 +222,21 @@ class PinaDataLoader:
Itera per un numero di passi pari al dataloader più lungo (come da __len__)
e fa ricominciare i dataloader più corti quando si esauriscono.
"""
# 1. Crea un iteratore per ogni dataloader
if self.separate_conditions:
for split, dl in self.dataloaders.items():
for batch in dl:
yield {split: batch}
return
iterators = {split: iter(dl) for split, dl in self.dataloaders.items()}
# 2. Itera per il numero di batch del dataloader più lungo
for _ in range(len(self)):
# 3. Prepara il dizionario di batch per questo step
batch_dict = {}
# 4. Ottieni il prossimo batch da ogni iteratore
for split, it in iterators.items():
try:
batch = next(it)
except StopIteration:
# 5. Se un iteratore è esaurito, resettalo e prendi il primo batch
new_it = iter(self.dataloaders[split])
iterators[split] = new_it # Salva il nuovo iteratore
iterators[split] = new_it
batch = next(new_it)
batch_dict[split] = batch
# 6. Restituisci il dizionario di batch
yield batch_dict

View File

@@ -1,41 +1,20 @@
"""Module for the PINA dataset classes."""
import torch
from torch.utils.data import Dataset
from torch_geometric.data import Data
from ..graph import Graph, LabelBatch
from ..label_tensor import LabelTensor
import torch
class PinaDatasetFactory:
"""
Factory class for the PINA dataset.
Depending on the data type inside the conditions, it instanciate an object
belonging to the appropriate subclass of
:class:`~pina.data.dataset.PinaDataset`. The possible subclasses are:
- :class:`~pina.data.dataset.PinaTensorDataset`, for handling \
:class:`torch.Tensor` and :class:`~pina.label_tensor.LabelTensor` data.
- :class:`~pina.data.dataset.PinaGraphDataset`, for handling \
:class:`~pina.graph.Graph` and :class:`~torch_geometric.data.Data` data.
TODO: Update docstring
"""
def __new__(cls, conditions_dict, **kwargs):
"""
Instantiate the appropriate subclass of
:class:`~pina.data.dataset.PinaDataset`.
If a graph is present in the conditions, returns a
:class:`~pina.data.dataset.PinaGraphDataset`, otherwise returns a
:class:`~pina.data.dataset.PinaTensorDataset`.
:param dict conditions_dict: Dictionary containing all the conditions
to be included in the dataset instance.
:return: A subclass of :class:`~pina.data.dataset.PinaDataset`.
:rtype: PinaTensorDataset | PinaGraphDataset
:raises ValueError: If an empty dictionary is provided.
TODO: Update docstring
"""
# Check if conditions_dict is empty
@@ -50,28 +29,11 @@ class PinaDatasetFactory:
raise ValueError(
f"Condition '{name}' data must be a dictionary"
)
# is_graph = cls._is_graph_dataset(conditions_dict)
# if is_graph:
# raise NotImplementedError("PinaGraphDataset is not implemented yet.")
dataset_dict[name] = PinaTensorDataset(data, **kwargs)
dataset_dict[name] = PinaDataset(data, **kwargs)
return dataset_dict
@staticmethod
def _is_graph_dataset(cond_data):
"""
TODO: Docstring
"""
# Iterate over the values of the current condition
for cond in cond_data.values():
if isinstance(cond, (Data, Graph, list, tuple)):
return True
return False
class PinaTensorDataset(Dataset):
class PinaDataset(Dataset):
"""
Dataset class for the PINA dataset with :class:`torch.Tensor` and
:class:`~pina.label_tensor.LabelTensor` data.
@@ -91,9 +53,8 @@ class PinaTensorDataset(Dataset):
self.automatic_batching = (
automatic_batching if automatic_batching is not None else True
)
self.stack_fn = (
{}
) # LabelTensor.stack if any(isinstance(v, LabelTensor) for v in data_dict.values()) else torch.stack
self.stack_fn = {}
# Determine stacking functions for each data type (used in collate_fn)
for k, v in data_dict.items():
if isinstance(v, LabelTensor):
self.stack_fn[k] = LabelTensor.stack