Add functionalities in DataModule and data loaders + tests datasets and DataModule (#453)
* Add num_workers and pin_memory arguments to DataLoader and DataModule tests
This commit is contained in:
committed by
Nicola Demo
parent
9cae9a438f
commit
571ef7f9e2
@@ -1,4 +1,5 @@
|
||||
import logging
|
||||
import warnings
|
||||
from lightning.pytorch import LightningDataModule
|
||||
import torch
|
||||
from ..label_tensor import LabelTensor
|
||||
@@ -8,6 +9,7 @@ from torch.utils.data.distributed import DistributedSampler
|
||||
from .dataset import PinaDatasetFactory
|
||||
from ..collector import Collector
|
||||
|
||||
|
||||
class DummyDataloader:
|
||||
""""
|
||||
Dummy dataloader used when batch size is None. It callects all the data
|
||||
@@ -57,7 +59,7 @@ class Collator:
|
||||
self.max_conditions_lengths = max_conditions_lengths
|
||||
self.callable_function = self._collate_custom_dataloader if \
|
||||
max_conditions_lengths is None else (
|
||||
self._collate_standard_dataloader)
|
||||
self._collate_standard_dataloader)
|
||||
self.dataset = dataset
|
||||
|
||||
def _collate_custom_dataloader(self, batch):
|
||||
@@ -95,7 +97,7 @@ class Collator:
|
||||
|
||||
|
||||
class PinaSampler:
|
||||
def __new__(self, dataset, batch_size, shuffle, automatic_batching):
|
||||
def __new__(cls, dataset, shuffle):
|
||||
|
||||
if (torch.distributed.is_available() and
|
||||
torch.distributed.is_initialized()):
|
||||
@@ -123,15 +125,35 @@ class PinaDataModule(LightningDataModule):
|
||||
batch_size=None,
|
||||
shuffle=True,
|
||||
repeat=False,
|
||||
automatic_batching=False
|
||||
automatic_batching=False,
|
||||
num_workers=0,
|
||||
pin_memory=False,
|
||||
):
|
||||
"""
|
||||
Initialize the object, creating dataset based on input problem
|
||||
:param problem: Problem where data are defined
|
||||
:param train_size: number/percentage of elements in train split
|
||||
:param test_size: number/percentage of elements in test split
|
||||
:param val_size: number/percentage of elements in evaluation split
|
||||
:param batch_size: batch size used for training
|
||||
Initialize the object, creating datasets based on the input problem.
|
||||
|
||||
:param problem: The problem defining the dataset.
|
||||
:type problem: AbstractProblem
|
||||
:param train_size: Fraction or number of elements in the training split.
|
||||
:type train_size: float
|
||||
:param test_size: Fraction or number of elements in the test split.
|
||||
:type test_size: float
|
||||
:param val_size: Fraction or number of elements in the validation split.
|
||||
:type val_size: float
|
||||
:param predict_size: Fraction or number of elements in the prediction split.
|
||||
:type predict_size: float
|
||||
:param batch_size: Batch size used for training. If None, the entire dataset is used per batch.
|
||||
:type batch_size: int or None
|
||||
:param shuffle: Whether to shuffle the dataset before splitting.
|
||||
:type shuffle: bool
|
||||
:param repeat: Whether to repeat the dataset indefinitely.
|
||||
:type repeat: bool
|
||||
:param automatic_batching: Whether to enable automatic batching.
|
||||
:type automatic_batching: bool
|
||||
:param num_workers: Number of worker threads for data loading. Default 0 (serial loading)
|
||||
:type num_workers: int
|
||||
:param pin_memory: Whether to use pinned memory for faster data transfer to GPU. (Default False)
|
||||
:type pin_memory: bool
|
||||
"""
|
||||
logging.debug('Start initialization of Pina DataModule')
|
||||
logging.info('Start initialization of Pina DataModule')
|
||||
@@ -170,6 +192,15 @@ class PinaDataModule(LightningDataModule):
|
||||
collector = Collector(problem)
|
||||
collector.store_fixed_data()
|
||||
collector.store_sample_domains()
|
||||
if batch_size is None and num_workers != 0:
|
||||
warnings.warn(
|
||||
"Setting num_workers when batch_size is None has no effect on "
|
||||
"the DataLoading process.")
|
||||
if batch_size is None and pin_memory:
|
||||
warnings.warn("Setting pin_memory to True has no effect when "
|
||||
"batch_size is None.")
|
||||
self.num_workers = num_workers
|
||||
self.pin_memory = pin_memory
|
||||
self.collector_splits = self._create_splits(collector, splits_dict)
|
||||
self.transfer_batch_to_device = self._transfer_batch_to_device
|
||||
|
||||
@@ -271,20 +302,27 @@ class PinaDataModule(LightningDataModule):
|
||||
dataset_dict[key].update({condition_name: data})
|
||||
return dataset_dict
|
||||
|
||||
|
||||
def _create_dataloader(self, split, dataset):
|
||||
shuffle = self.shuffle if split == 'train' else False
|
||||
# Suppress the warning about num_workers.
|
||||
# In many cases, especially for PINNs, serial data loading can outperform parallel data loading.
|
||||
warnings.filterwarnings(
|
||||
"ignore",
|
||||
message=(
|
||||
r"The '(train|val|test)_dataloader' does not have many workers which may be a bottleneck."),
|
||||
module="lightning.pytorch.trainer.connectors.data_connector"
|
||||
)
|
||||
# Use custom batching (good if batch size is large)
|
||||
if self.batch_size is not None:
|
||||
sampler = PinaSampler(dataset, self.batch_size,
|
||||
shuffle, self.automatic_batching)
|
||||
sampler = PinaSampler(dataset, shuffle)
|
||||
if self.automatic_batching:
|
||||
collate = Collator(self.find_max_conditions_lengths(split))
|
||||
|
||||
else:
|
||||
collate = Collator(None, dataset)
|
||||
return DataLoader(dataset, self.batch_size,
|
||||
collate_fn=collate, sampler=sampler)
|
||||
collate_fn=collate, sampler=sampler,
|
||||
num_workers=self.num_workers)
|
||||
dataloader = DummyDataloader(dataset)
|
||||
dataloader.dataset = self._transfer_batch_to_device(
|
||||
dataloader.dataset, self.trainer.strategy.root_device, 0)
|
||||
|
||||
@@ -18,6 +18,8 @@ class Trainer(lightning.pytorch.Trainer):
|
||||
predict_size=0.,
|
||||
compile=None,
|
||||
automatic_batching=None,
|
||||
num_workers=None,
|
||||
pin_memory=None,
|
||||
**kwargs):
|
||||
"""
|
||||
PINA Trainer class for costumizing every aspect of training via flags.
|
||||
@@ -44,6 +46,10 @@ class Trainer(lightning.pytorch.Trainer):
|
||||
performed. Please avoid using automatic batching when batch_size is
|
||||
large, default False.
|
||||
:type automatic_batching: bool
|
||||
:param num_workers: Number of worker threads for data loading. Default 0 (serial loading)
|
||||
:type num_workers: int
|
||||
:param pin_memory: Whether to use pinned memory for faster data transfer to GPU. (Default False)
|
||||
:type pin_memory: bool
|
||||
|
||||
:Keyword Arguments:
|
||||
The additional keyword arguments specify the training setup
|
||||
@@ -60,6 +66,14 @@ class Trainer(lightning.pytorch.Trainer):
|
||||
check_consistency(automatic_batching, bool)
|
||||
if compile is not None:
|
||||
check_consistency(compile, bool)
|
||||
if pin_memory is not None:
|
||||
check_consistency(pin_memory, bool)
|
||||
else:
|
||||
pin_memory = False
|
||||
if num_workers is not None:
|
||||
check_consistency(pin_memory, int)
|
||||
else:
|
||||
num_workers = 0
|
||||
if train_size + test_size + val_size + predict_size > 1:
|
||||
raise ValueError('train_size, test_size, val_size and predict_size '
|
||||
'must sum up to 1.')
|
||||
@@ -93,19 +107,16 @@ class Trainer(lightning.pytorch.Trainer):
|
||||
compile = False
|
||||
if automatic_batching is None:
|
||||
automatic_batching = False
|
||||
|
||||
|
||||
# set attributes
|
||||
self.compile = compile
|
||||
self.automatic_batching = automatic_batching
|
||||
self.train_size = train_size
|
||||
self.test_size = test_size
|
||||
self.val_size = val_size
|
||||
self.predict_size = predict_size
|
||||
self.solver = solver
|
||||
self.batch_size = batch_size
|
||||
self._move_to_device()
|
||||
self.data_module = None
|
||||
self._create_loader()
|
||||
self._create_datamodule(train_size, test_size, val_size, predict_size,
|
||||
batch_size, automatic_batching, pin_memory,
|
||||
num_workers)
|
||||
|
||||
# logging
|
||||
self.logging_kwargs = {
|
||||
@@ -127,7 +138,15 @@ class Trainer(lightning.pytorch.Trainer):
|
||||
pb.unknown_parameters[key] = torch.nn.Parameter(
|
||||
pb.unknown_parameters[key].data.to(device))
|
||||
|
||||
def _create_loader(self):
|
||||
def _create_datamodule(self,
|
||||
train_size,
|
||||
test_size,
|
||||
val_size,
|
||||
predict_size,
|
||||
batch_size,
|
||||
automatic_batching,
|
||||
pin_memory,
|
||||
num_workers):
|
||||
"""
|
||||
This method is used here because is resampling is needed
|
||||
during training, there is no need to define to touch the
|
||||
@@ -136,8 +155,8 @@ class Trainer(lightning.pytorch.Trainer):
|
||||
if not self.solver.problem.are_all_domains_discretised:
|
||||
error_message = '\n'.join([
|
||||
f"""{" " * 13} ---> Domain {key} {
|
||||
"sampled" if key in self.solver.problem.discretised_domains else
|
||||
"not sampled"}""" for key in
|
||||
"sampled" if key in self.solver.problem.discretised_domains else
|
||||
"not sampled"}""" for key in
|
||||
self.solver.problem.domains.keys()
|
||||
])
|
||||
raise RuntimeError('Cannot create Trainer if not all conditions '
|
||||
@@ -145,12 +164,14 @@ class Trainer(lightning.pytorch.Trainer):
|
||||
f'{error_message}')
|
||||
self.data_module = PinaDataModule(
|
||||
self.solver.problem,
|
||||
train_size=self.train_size,
|
||||
test_size=self.test_size,
|
||||
val_size=self.val_size,
|
||||
predict_size=self.predict_size,
|
||||
batch_size=self.batch_size,
|
||||
automatic_batching=self.automatic_batching)
|
||||
train_size=train_size,
|
||||
test_size=test_size,
|
||||
val_size=val_size,
|
||||
predict_size=predict_size,
|
||||
batch_size=batch_size,
|
||||
automatic_batching=automatic_batching,
|
||||
num_workers=num_workers,
|
||||
pin_memory=pin_memory)
|
||||
|
||||
def train(self, **kwargs):
|
||||
"""
|
||||
|
||||
178
tests/test_data/test_datamodule.py
Normal file
178
tests/test_data/test_datamodule.py
Normal file
@@ -0,0 +1,178 @@
|
||||
import torch
|
||||
import pytest
|
||||
from pina.data import PinaDataModule
|
||||
from pina.data.dataset import PinaTensorDataset, PinaGraphDataset
|
||||
from pina.problem.zoo import SupervisedProblem
|
||||
from pina.graph import RadiusGraph
|
||||
from pina.data.data_module import DummyDataloader
|
||||
from pina import Trainer
|
||||
from pina.solvers import SupervisedSolver
|
||||
from torch_geometric.data import Batch
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
input_tensor = torch.rand((100, 10))
|
||||
output_tensor = torch.rand((100, 2))
|
||||
|
||||
x = torch.rand((100, 50 , 10))
|
||||
pos = torch.rand((100, 50 , 2))
|
||||
input_graph = RadiusGraph(x, pos, r=.1, build_edge_attr=True)
|
||||
output_graph = torch.rand((100, 50 , 10))
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"input_, output_",
|
||||
[
|
||||
(input_tensor, output_tensor),
|
||||
(input_graph, output_graph)
|
||||
]
|
||||
)
|
||||
def test_constructor(input_, output_):
|
||||
problem = SupervisedProblem(input_=input_, output_=output_)
|
||||
PinaDataModule(problem)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"input_, output_",
|
||||
[
|
||||
(input_tensor, output_tensor),
|
||||
(input_graph, output_graph)
|
||||
]
|
||||
)
|
||||
@pytest.mark.parametrize(
|
||||
"train_size, val_size, test_size",
|
||||
[
|
||||
(.7, .2, .1),
|
||||
(.7, .3, 0)
|
||||
]
|
||||
)
|
||||
def test_setup_train(input_, output_, train_size, val_size, test_size):
|
||||
problem = SupervisedProblem(input_=input_, output_=output_)
|
||||
dm = PinaDataModule(problem, train_size=train_size, val_size=val_size, test_size=test_size)
|
||||
dm.setup()
|
||||
assert hasattr(dm, "train_dataset")
|
||||
if isinstance(input_, torch.Tensor):
|
||||
assert isinstance(dm.train_dataset, PinaTensorDataset)
|
||||
else:
|
||||
assert isinstance(dm.train_dataset, PinaGraphDataset)
|
||||
#assert len(dm.train_dataset) == int(len(input_) * train_size)
|
||||
if test_size > 0:
|
||||
assert hasattr(dm, "test_dataset")
|
||||
assert dm.test_dataset is None
|
||||
else:
|
||||
assert not hasattr(dm, "test_dataset")
|
||||
assert hasattr(dm, "val_dataset")
|
||||
if isinstance(input_, torch.Tensor):
|
||||
assert isinstance(dm.val_dataset, PinaTensorDataset)
|
||||
else:
|
||||
assert isinstance(dm.val_dataset, PinaGraphDataset)
|
||||
#assert len(dm.val_dataset) == int(len(input_) * val_size)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"input_, output_",
|
||||
[
|
||||
(input_tensor, output_tensor),
|
||||
(input_graph, output_graph)
|
||||
]
|
||||
)
|
||||
@pytest.mark.parametrize(
|
||||
"train_size, val_size, test_size",
|
||||
[
|
||||
(.7, .2, .1),
|
||||
(0., 0., 1.)
|
||||
]
|
||||
)
|
||||
def test_setup_test(input_, output_, train_size, val_size, test_size):
|
||||
problem = SupervisedProblem(input_=input_, output_=output_)
|
||||
dm = PinaDataModule(problem, train_size=train_size, val_size=val_size, test_size=test_size)
|
||||
dm.setup(stage='test')
|
||||
if train_size > 0:
|
||||
assert hasattr(dm, "train_dataset")
|
||||
assert dm.train_dataset is None
|
||||
else:
|
||||
assert not hasattr(dm, "train_dataset")
|
||||
if val_size > 0:
|
||||
assert hasattr(dm, "val_dataset")
|
||||
assert dm.val_dataset is None
|
||||
else:
|
||||
assert not hasattr(dm, "val_dataset")
|
||||
|
||||
assert hasattr(dm, "test_dataset")
|
||||
if isinstance(input_, torch.Tensor):
|
||||
assert isinstance(dm.test_dataset, PinaTensorDataset)
|
||||
else:
|
||||
assert isinstance(dm.test_dataset, PinaGraphDataset)
|
||||
#assert len(dm.test_dataset) == int(len(input_) * test_size)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"input_, output_",
|
||||
[
|
||||
(input_tensor, output_tensor),
|
||||
(input_graph, output_graph)
|
||||
]
|
||||
)
|
||||
def test_dummy_dataloader(input_, output_):
|
||||
problem = SupervisedProblem(input_=input_, output_=output_)
|
||||
solver = SupervisedSolver(problem=problem, model=torch.nn.Linear(10, 10))
|
||||
trainer = Trainer(solver, batch_size=None, train_size=.7, val_size=.3, test_size=0.)
|
||||
dm = trainer.data_module
|
||||
dm.setup()
|
||||
dm.trainer = trainer
|
||||
dataloader = dm.train_dataloader()
|
||||
assert isinstance(dataloader, DummyDataloader)
|
||||
assert len(dataloader) == 1
|
||||
data = next(dataloader)
|
||||
assert isinstance(data, list)
|
||||
assert isinstance(data[0], tuple)
|
||||
if isinstance(input_, RadiusGraph):
|
||||
assert isinstance(data[0][1]['input_points'], Batch)
|
||||
else:
|
||||
assert isinstance(data[0][1]['input_points'], torch.Tensor)
|
||||
assert isinstance(data[0][1]['output_points'], torch.Tensor)
|
||||
|
||||
dataloader = dm.val_dataloader()
|
||||
assert isinstance(dataloader, DummyDataloader)
|
||||
assert len(dataloader) == 1
|
||||
data = next(dataloader)
|
||||
assert isinstance(data, list)
|
||||
assert isinstance(data[0], tuple)
|
||||
if isinstance(input_, RadiusGraph):
|
||||
assert isinstance(data[0][1]['input_points'], Batch)
|
||||
else:
|
||||
assert isinstance(data[0][1]['input_points'], torch.Tensor)
|
||||
assert isinstance(data[0][1]['output_points'], torch.Tensor)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"input_, output_",
|
||||
[
|
||||
(input_tensor, output_tensor),
|
||||
(input_graph, output_graph)
|
||||
]
|
||||
)
|
||||
def test_dataloader(input_, output_):
|
||||
problem = SupervisedProblem(input_=input_, output_=output_)
|
||||
solver = SupervisedSolver(problem=problem, model=torch.nn.Linear(10, 10))
|
||||
trainer = Trainer(solver, batch_size=10, train_size=.7, val_size=.3, test_size=0.)
|
||||
dm = trainer.data_module
|
||||
dm.setup()
|
||||
dm.trainer = trainer
|
||||
dataloader = dm.train_dataloader()
|
||||
assert isinstance(dataloader, DataLoader)
|
||||
assert len(dataloader) == 7
|
||||
data = next(iter(dataloader))
|
||||
assert isinstance(data, dict)
|
||||
if isinstance(input_, RadiusGraph):
|
||||
assert isinstance(data['data']['input_points'], Batch)
|
||||
else:
|
||||
assert isinstance(data['data']['input_points'], torch.Tensor)
|
||||
assert isinstance(data['data']['output_points'], torch.Tensor)
|
||||
|
||||
dataloader = dm.val_dataloader()
|
||||
assert isinstance(dataloader, DataLoader)
|
||||
assert len(dataloader) == 3
|
||||
data = next(iter(dataloader))
|
||||
assert isinstance(data, dict)
|
||||
if isinstance(input_, RadiusGraph):
|
||||
assert isinstance(data['data']['input_points'], Batch)
|
||||
else:
|
||||
assert isinstance(data['data']['input_points'], torch.Tensor)
|
||||
assert isinstance(data['data']['output_points'], torch.Tensor)
|
||||
|
||||
101
tests/test_data/test_graph_dataset.py
Normal file
101
tests/test_data/test_graph_dataset.py
Normal file
@@ -0,0 +1,101 @@
|
||||
import torch
|
||||
import pytest
|
||||
from pina.data.dataset import PinaDatasetFactory, PinaGraphDataset
|
||||
from pina.graph import KNNGraph
|
||||
from torch_geometric.data import Data
|
||||
|
||||
x = torch.rand((100, 20, 10))
|
||||
pos = torch.rand((100, 20, 2))
|
||||
input_ = KNNGraph(x=x, pos=pos, k=3, build_edge_attr=True)
|
||||
output_ = torch.rand((100, 20, 10))
|
||||
|
||||
x_2 = torch.rand((50, 20, 10))
|
||||
pos_2 = torch.rand((50, 20, 2))
|
||||
input_2_ = KNNGraph(x=x_2, pos=pos_2, k=3, build_edge_attr=True)
|
||||
output_2_ = torch.rand((50, 20, 10))
|
||||
|
||||
|
||||
# Problem with a single condition
|
||||
conditions_dict_single = {
|
||||
'data': {
|
||||
'input_points': input_.data,
|
||||
'output_points': output_,
|
||||
}
|
||||
}
|
||||
max_conditions_lengths_single = {
|
||||
'data': 100
|
||||
}
|
||||
|
||||
# Problem with multiple conditions
|
||||
conditions_dict_single_multi = {
|
||||
'data_1': {
|
||||
'input_points': input_.data,
|
||||
'output_points': output_,
|
||||
},
|
||||
'data_2': {
|
||||
'input_points': input_2_.data,
|
||||
'output_points': output_2_,
|
||||
}
|
||||
}
|
||||
|
||||
max_conditions_lengths_multi = {
|
||||
'data_1': 100,
|
||||
'data_2': 50
|
||||
}
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"conditions_dict, max_conditions_lengths",
|
||||
[
|
||||
(conditions_dict_single, max_conditions_lengths_single),
|
||||
(conditions_dict_single_multi, max_conditions_lengths_multi)
|
||||
]
|
||||
)
|
||||
def test_constructor(conditions_dict, max_conditions_lengths):
|
||||
dataset = PinaDatasetFactory(conditions_dict,
|
||||
max_conditions_lengths=max_conditions_lengths,
|
||||
automatic_batching=True)
|
||||
assert isinstance(dataset, PinaGraphDataset)
|
||||
assert len(dataset) == 100
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"conditions_dict, max_conditions_lengths",
|
||||
[
|
||||
(conditions_dict_single, max_conditions_lengths_single),
|
||||
(conditions_dict_single_multi, max_conditions_lengths_multi)
|
||||
]
|
||||
)
|
||||
def test_getitem(conditions_dict, max_conditions_lengths):
|
||||
dataset = PinaDatasetFactory(conditions_dict,
|
||||
max_conditions_lengths=max_conditions_lengths,
|
||||
automatic_batching=True)
|
||||
data = dataset[50]
|
||||
assert isinstance(data, dict)
|
||||
assert all([isinstance(d['input_points'], Data)
|
||||
for d in data.values()])
|
||||
assert all([isinstance(d['output_points'], torch.Tensor)
|
||||
for d in data.values()])
|
||||
assert all([d['input_points'].x.shape == torch.Size((20, 10))
|
||||
for d in data.values()])
|
||||
assert all([d['output_points'].shape == torch.Size((20, 10))
|
||||
for d in data.values()])
|
||||
assert all([d['input_points'].edge_index.shape ==
|
||||
torch.Size((2, 60)) for d in data.values()])
|
||||
assert all([d['input_points'].edge_attr.shape[0]
|
||||
== 60 for d in data.values()])
|
||||
|
||||
data = dataset.fetch_from_idx_list([i for i in range(20)])
|
||||
assert isinstance(data, dict)
|
||||
assert all([isinstance(d['input_points'], Data)
|
||||
for d in data.values()])
|
||||
assert all([isinstance(d['output_points'], torch.Tensor)
|
||||
for d in data.values()])
|
||||
assert all([d['input_points'].x.shape == torch.Size((400, 10))
|
||||
for d in data.values()])
|
||||
assert all([d['output_points'].shape == torch.Size((400, 10))
|
||||
for d in data.values()])
|
||||
assert all([d['input_points'].edge_index.shape ==
|
||||
torch.Size((2, 1200)) for d in data.values()])
|
||||
assert all([d['input_points'].edge_attr.shape[0]
|
||||
== 1200 for d in data.values()])
|
||||
88
tests/test_data/test_tensor_dataset.py
Normal file
88
tests/test_data/test_tensor_dataset.py
Normal file
@@ -0,0 +1,88 @@
|
||||
import torch
|
||||
import pytest
|
||||
from pina.data.dataset import PinaDatasetFactory, PinaTensorDataset
|
||||
|
||||
input_tensor = torch.rand((100, 10))
|
||||
output_tensor = torch.rand((100, 2))
|
||||
|
||||
input_tensor_2 = torch.rand((50, 10))
|
||||
output_tensor_2 = torch.rand((50, 2))
|
||||
|
||||
conditions_dict_single = {
|
||||
'data': {
|
||||
'input_points': input_tensor,
|
||||
'output_points': output_tensor,
|
||||
}
|
||||
}
|
||||
|
||||
conditions_dict_single_multi = {
|
||||
'data_1': {
|
||||
'input_points': input_tensor,
|
||||
'output_points': output_tensor,
|
||||
},
|
||||
'data_2': {
|
||||
'input_points': input_tensor_2,
|
||||
'output_points': output_tensor_2,
|
||||
}
|
||||
}
|
||||
|
||||
max_conditions_lengths_single = {
|
||||
'data': 100
|
||||
}
|
||||
|
||||
max_conditions_lengths_multi = {
|
||||
'data_1': 100,
|
||||
'data_2': 50
|
||||
}
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"conditions_dict, max_conditions_lengths",
|
||||
[
|
||||
(conditions_dict_single, max_conditions_lengths_single),
|
||||
(conditions_dict_single_multi, max_conditions_lengths_multi)
|
||||
]
|
||||
)
|
||||
def test_constructor_tensor(conditions_dict, max_conditions_lengths):
|
||||
dataset = PinaDatasetFactory(conditions_dict,
|
||||
max_conditions_lengths=max_conditions_lengths,
|
||||
automatic_batching=True)
|
||||
assert isinstance(dataset, PinaTensorDataset)
|
||||
|
||||
|
||||
def test_getitem_single():
|
||||
dataset = PinaDatasetFactory(conditions_dict_single,
|
||||
max_conditions_lengths=max_conditions_lengths_single,
|
||||
automatic_batching=False)
|
||||
|
||||
tensors = dataset.fetch_from_idx_list([i for i in range(70)])
|
||||
assert isinstance(tensors, dict)
|
||||
assert list(tensors.keys()) == ['data']
|
||||
assert sorted(list(tensors['data'].keys())) == [
|
||||
'input_points', 'output_points']
|
||||
assert isinstance(tensors['data']['input_points'], torch.Tensor)
|
||||
assert tensors['data']['input_points'].shape == torch.Size((70, 10))
|
||||
assert isinstance(tensors['data']['output_points'], torch.Tensor)
|
||||
assert tensors['data']['output_points'].shape == torch.Size((70, 2))
|
||||
|
||||
|
||||
def test_getitem_multi():
|
||||
dataset = PinaDatasetFactory(conditions_dict_single_multi,
|
||||
max_conditions_lengths=max_conditions_lengths_multi,
|
||||
automatic_batching=False)
|
||||
tensors = dataset.fetch_from_idx_list([i for i in range(70)])
|
||||
assert isinstance(tensors, dict)
|
||||
assert list(tensors.keys()) == ['data_1', 'data_2']
|
||||
assert sorted(list(tensors['data_1'].keys())) == [
|
||||
'input_points', 'output_points']
|
||||
assert isinstance(tensors['data_1']['input_points'], torch.Tensor)
|
||||
assert tensors['data_1']['input_points'].shape == torch.Size((70, 10))
|
||||
assert isinstance(tensors['data_1']['output_points'], torch.Tensor)
|
||||
assert tensors['data_1']['output_points'].shape == torch.Size((70, 2))
|
||||
|
||||
assert sorted(list(tensors['data_2'].keys())) == [
|
||||
'input_points', 'output_points']
|
||||
assert isinstance(tensors['data_2']['input_points'], torch.Tensor)
|
||||
assert tensors['data_2']['input_points'].shape == torch.Size((50, 10))
|
||||
assert isinstance(tensors['data_2']['output_points'], torch.Tensor)
|
||||
assert tensors['data_2']['output_points'].shape == torch.Size((50, 2))
|
||||
Reference in New Issue
Block a user