Add functionalities in DataModule and data loaders + tests datasets and DataModule (#453)

* Add num_workers and pin_memory arguments to DataLoader and DataModule tests
This commit is contained in:
Filippo Olivo
2025-02-18 09:10:23 +01:00
committed by Nicola Demo
parent 9cae9a438f
commit 571ef7f9e2
5 changed files with 455 additions and 29 deletions

View File

@@ -18,6 +18,8 @@ class Trainer(lightning.pytorch.Trainer):
predict_size=0.,
compile=None,
automatic_batching=None,
num_workers=None,
pin_memory=None,
**kwargs):
"""
PINA Trainer class for costumizing every aspect of training via flags.
@@ -44,6 +46,10 @@ class Trainer(lightning.pytorch.Trainer):
performed. Please avoid using automatic batching when batch_size is
large, default False.
:type automatic_batching: bool
:param num_workers: Number of worker threads for data loading. Default 0 (serial loading)
:type num_workers: int
:param pin_memory: Whether to use pinned memory for faster data transfer to GPU. (Default False)
:type pin_memory: bool
:Keyword Arguments:
The additional keyword arguments specify the training setup
@@ -60,6 +66,14 @@ class Trainer(lightning.pytorch.Trainer):
check_consistency(automatic_batching, bool)
if compile is not None:
check_consistency(compile, bool)
if pin_memory is not None:
check_consistency(pin_memory, bool)
else:
pin_memory = False
if num_workers is not None:
check_consistency(pin_memory, int)
else:
num_workers = 0
if train_size + test_size + val_size + predict_size > 1:
raise ValueError('train_size, test_size, val_size and predict_size '
'must sum up to 1.')
@@ -93,19 +107,16 @@ class Trainer(lightning.pytorch.Trainer):
compile = False
if automatic_batching is None:
automatic_batching = False
# set attributes
self.compile = compile
self.automatic_batching = automatic_batching
self.train_size = train_size
self.test_size = test_size
self.val_size = val_size
self.predict_size = predict_size
self.solver = solver
self.batch_size = batch_size
self._move_to_device()
self.data_module = None
self._create_loader()
self._create_datamodule(train_size, test_size, val_size, predict_size,
batch_size, automatic_batching, pin_memory,
num_workers)
# logging
self.logging_kwargs = {
@@ -127,7 +138,15 @@ class Trainer(lightning.pytorch.Trainer):
pb.unknown_parameters[key] = torch.nn.Parameter(
pb.unknown_parameters[key].data.to(device))
def _create_loader(self):
def _create_datamodule(self,
train_size,
test_size,
val_size,
predict_size,
batch_size,
automatic_batching,
pin_memory,
num_workers):
"""
This method is used here because is resampling is needed
during training, there is no need to define to touch the
@@ -136,8 +155,8 @@ class Trainer(lightning.pytorch.Trainer):
if not self.solver.problem.are_all_domains_discretised:
error_message = '\n'.join([
f"""{" " * 13} ---> Domain {key} {
"sampled" if key in self.solver.problem.discretised_domains else
"not sampled"}""" for key in
"sampled" if key in self.solver.problem.discretised_domains else
"not sampled"}""" for key in
self.solver.problem.domains.keys()
])
raise RuntimeError('Cannot create Trainer if not all conditions '
@@ -145,12 +164,14 @@ class Trainer(lightning.pytorch.Trainer):
f'{error_message}')
self.data_module = PinaDataModule(
self.solver.problem,
train_size=self.train_size,
test_size=self.test_size,
val_size=self.val_size,
predict_size=self.predict_size,
batch_size=self.batch_size,
automatic_batching=self.automatic_batching)
train_size=train_size,
test_size=test_size,
val_size=val_size,
predict_size=predict_size,
batch_size=batch_size,
automatic_batching=automatic_batching,
num_workers=num_workers,
pin_memory=pin_memory)
def train(self, **kwargs):
"""