Add functionalities in DataModule and data loaders + tests datasets and DataModule (#453)

* Add num_workers and pin_memory arguments to DataLoader and DataModule tests
This commit is contained in:
Filippo Olivo
2025-02-18 09:10:23 +01:00
committed by Nicola Demo
parent 9cae9a438f
commit 571ef7f9e2
5 changed files with 455 additions and 29 deletions

View File

@@ -0,0 +1,178 @@
import torch
import pytest
from pina.data import PinaDataModule
from pina.data.dataset import PinaTensorDataset, PinaGraphDataset
from pina.problem.zoo import SupervisedProblem
from pina.graph import RadiusGraph
from pina.data.data_module import DummyDataloader
from pina import Trainer
from pina.solvers import SupervisedSolver
from torch_geometric.data import Batch
from torch.utils.data import DataLoader
input_tensor = torch.rand((100, 10))
output_tensor = torch.rand((100, 2))
x = torch.rand((100, 50 , 10))
pos = torch.rand((100, 50 , 2))
input_graph = RadiusGraph(x, pos, r=.1, build_edge_attr=True)
output_graph = torch.rand((100, 50 , 10))
@pytest.mark.parametrize(
"input_, output_",
[
(input_tensor, output_tensor),
(input_graph, output_graph)
]
)
def test_constructor(input_, output_):
problem = SupervisedProblem(input_=input_, output_=output_)
PinaDataModule(problem)
@pytest.mark.parametrize(
"input_, output_",
[
(input_tensor, output_tensor),
(input_graph, output_graph)
]
)
@pytest.mark.parametrize(
"train_size, val_size, test_size",
[
(.7, .2, .1),
(.7, .3, 0)
]
)
def test_setup_train(input_, output_, train_size, val_size, test_size):
problem = SupervisedProblem(input_=input_, output_=output_)
dm = PinaDataModule(problem, train_size=train_size, val_size=val_size, test_size=test_size)
dm.setup()
assert hasattr(dm, "train_dataset")
if isinstance(input_, torch.Tensor):
assert isinstance(dm.train_dataset, PinaTensorDataset)
else:
assert isinstance(dm.train_dataset, PinaGraphDataset)
#assert len(dm.train_dataset) == int(len(input_) * train_size)
if test_size > 0:
assert hasattr(dm, "test_dataset")
assert dm.test_dataset is None
else:
assert not hasattr(dm, "test_dataset")
assert hasattr(dm, "val_dataset")
if isinstance(input_, torch.Tensor):
assert isinstance(dm.val_dataset, PinaTensorDataset)
else:
assert isinstance(dm.val_dataset, PinaGraphDataset)
#assert len(dm.val_dataset) == int(len(input_) * val_size)
@pytest.mark.parametrize(
"input_, output_",
[
(input_tensor, output_tensor),
(input_graph, output_graph)
]
)
@pytest.mark.parametrize(
"train_size, val_size, test_size",
[
(.7, .2, .1),
(0., 0., 1.)
]
)
def test_setup_test(input_, output_, train_size, val_size, test_size):
problem = SupervisedProblem(input_=input_, output_=output_)
dm = PinaDataModule(problem, train_size=train_size, val_size=val_size, test_size=test_size)
dm.setup(stage='test')
if train_size > 0:
assert hasattr(dm, "train_dataset")
assert dm.train_dataset is None
else:
assert not hasattr(dm, "train_dataset")
if val_size > 0:
assert hasattr(dm, "val_dataset")
assert dm.val_dataset is None
else:
assert not hasattr(dm, "val_dataset")
assert hasattr(dm, "test_dataset")
if isinstance(input_, torch.Tensor):
assert isinstance(dm.test_dataset, PinaTensorDataset)
else:
assert isinstance(dm.test_dataset, PinaGraphDataset)
#assert len(dm.test_dataset) == int(len(input_) * test_size)
@pytest.mark.parametrize(
"input_, output_",
[
(input_tensor, output_tensor),
(input_graph, output_graph)
]
)
def test_dummy_dataloader(input_, output_):
problem = SupervisedProblem(input_=input_, output_=output_)
solver = SupervisedSolver(problem=problem, model=torch.nn.Linear(10, 10))
trainer = Trainer(solver, batch_size=None, train_size=.7, val_size=.3, test_size=0.)
dm = trainer.data_module
dm.setup()
dm.trainer = trainer
dataloader = dm.train_dataloader()
assert isinstance(dataloader, DummyDataloader)
assert len(dataloader) == 1
data = next(dataloader)
assert isinstance(data, list)
assert isinstance(data[0], tuple)
if isinstance(input_, RadiusGraph):
assert isinstance(data[0][1]['input_points'], Batch)
else:
assert isinstance(data[0][1]['input_points'], torch.Tensor)
assert isinstance(data[0][1]['output_points'], torch.Tensor)
dataloader = dm.val_dataloader()
assert isinstance(dataloader, DummyDataloader)
assert len(dataloader) == 1
data = next(dataloader)
assert isinstance(data, list)
assert isinstance(data[0], tuple)
if isinstance(input_, RadiusGraph):
assert isinstance(data[0][1]['input_points'], Batch)
else:
assert isinstance(data[0][1]['input_points'], torch.Tensor)
assert isinstance(data[0][1]['output_points'], torch.Tensor)
@pytest.mark.parametrize(
"input_, output_",
[
(input_tensor, output_tensor),
(input_graph, output_graph)
]
)
def test_dataloader(input_, output_):
problem = SupervisedProblem(input_=input_, output_=output_)
solver = SupervisedSolver(problem=problem, model=torch.nn.Linear(10, 10))
trainer = Trainer(solver, batch_size=10, train_size=.7, val_size=.3, test_size=0.)
dm = trainer.data_module
dm.setup()
dm.trainer = trainer
dataloader = dm.train_dataloader()
assert isinstance(dataloader, DataLoader)
assert len(dataloader) == 7
data = next(iter(dataloader))
assert isinstance(data, dict)
if isinstance(input_, RadiusGraph):
assert isinstance(data['data']['input_points'], Batch)
else:
assert isinstance(data['data']['input_points'], torch.Tensor)
assert isinstance(data['data']['output_points'], torch.Tensor)
dataloader = dm.val_dataloader()
assert isinstance(dataloader, DataLoader)
assert len(dataloader) == 3
data = next(iter(dataloader))
assert isinstance(data, dict)
if isinstance(input_, RadiusGraph):
assert isinstance(data['data']['input_points'], Batch)
else:
assert isinstance(data['data']['input_points'], torch.Tensor)
assert isinstance(data['data']['output_points'], torch.Tensor)

View File

@@ -0,0 +1,101 @@
import torch
import pytest
from pina.data.dataset import PinaDatasetFactory, PinaGraphDataset
from pina.graph import KNNGraph
from torch_geometric.data import Data
x = torch.rand((100, 20, 10))
pos = torch.rand((100, 20, 2))
input_ = KNNGraph(x=x, pos=pos, k=3, build_edge_attr=True)
output_ = torch.rand((100, 20, 10))
x_2 = torch.rand((50, 20, 10))
pos_2 = torch.rand((50, 20, 2))
input_2_ = KNNGraph(x=x_2, pos=pos_2, k=3, build_edge_attr=True)
output_2_ = torch.rand((50, 20, 10))
# Problem with a single condition
conditions_dict_single = {
'data': {
'input_points': input_.data,
'output_points': output_,
}
}
max_conditions_lengths_single = {
'data': 100
}
# Problem with multiple conditions
conditions_dict_single_multi = {
'data_1': {
'input_points': input_.data,
'output_points': output_,
},
'data_2': {
'input_points': input_2_.data,
'output_points': output_2_,
}
}
max_conditions_lengths_multi = {
'data_1': 100,
'data_2': 50
}
@pytest.mark.parametrize(
"conditions_dict, max_conditions_lengths",
[
(conditions_dict_single, max_conditions_lengths_single),
(conditions_dict_single_multi, max_conditions_lengths_multi)
]
)
def test_constructor(conditions_dict, max_conditions_lengths):
dataset = PinaDatasetFactory(conditions_dict,
max_conditions_lengths=max_conditions_lengths,
automatic_batching=True)
assert isinstance(dataset, PinaGraphDataset)
assert len(dataset) == 100
@pytest.mark.parametrize(
"conditions_dict, max_conditions_lengths",
[
(conditions_dict_single, max_conditions_lengths_single),
(conditions_dict_single_multi, max_conditions_lengths_multi)
]
)
def test_getitem(conditions_dict, max_conditions_lengths):
dataset = PinaDatasetFactory(conditions_dict,
max_conditions_lengths=max_conditions_lengths,
automatic_batching=True)
data = dataset[50]
assert isinstance(data, dict)
assert all([isinstance(d['input_points'], Data)
for d in data.values()])
assert all([isinstance(d['output_points'], torch.Tensor)
for d in data.values()])
assert all([d['input_points'].x.shape == torch.Size((20, 10))
for d in data.values()])
assert all([d['output_points'].shape == torch.Size((20, 10))
for d in data.values()])
assert all([d['input_points'].edge_index.shape ==
torch.Size((2, 60)) for d in data.values()])
assert all([d['input_points'].edge_attr.shape[0]
== 60 for d in data.values()])
data = dataset.fetch_from_idx_list([i for i in range(20)])
assert isinstance(data, dict)
assert all([isinstance(d['input_points'], Data)
for d in data.values()])
assert all([isinstance(d['output_points'], torch.Tensor)
for d in data.values()])
assert all([d['input_points'].x.shape == torch.Size((400, 10))
for d in data.values()])
assert all([d['output_points'].shape == torch.Size((400, 10))
for d in data.values()])
assert all([d['input_points'].edge_index.shape ==
torch.Size((2, 1200)) for d in data.values()])
assert all([d['input_points'].edge_attr.shape[0]
== 1200 for d in data.values()])

View File

@@ -0,0 +1,88 @@
import torch
import pytest
from pina.data.dataset import PinaDatasetFactory, PinaTensorDataset
input_tensor = torch.rand((100, 10))
output_tensor = torch.rand((100, 2))
input_tensor_2 = torch.rand((50, 10))
output_tensor_2 = torch.rand((50, 2))
conditions_dict_single = {
'data': {
'input_points': input_tensor,
'output_points': output_tensor,
}
}
conditions_dict_single_multi = {
'data_1': {
'input_points': input_tensor,
'output_points': output_tensor,
},
'data_2': {
'input_points': input_tensor_2,
'output_points': output_tensor_2,
}
}
max_conditions_lengths_single = {
'data': 100
}
max_conditions_lengths_multi = {
'data_1': 100,
'data_2': 50
}
@pytest.mark.parametrize(
"conditions_dict, max_conditions_lengths",
[
(conditions_dict_single, max_conditions_lengths_single),
(conditions_dict_single_multi, max_conditions_lengths_multi)
]
)
def test_constructor_tensor(conditions_dict, max_conditions_lengths):
dataset = PinaDatasetFactory(conditions_dict,
max_conditions_lengths=max_conditions_lengths,
automatic_batching=True)
assert isinstance(dataset, PinaTensorDataset)
def test_getitem_single():
dataset = PinaDatasetFactory(conditions_dict_single,
max_conditions_lengths=max_conditions_lengths_single,
automatic_batching=False)
tensors = dataset.fetch_from_idx_list([i for i in range(70)])
assert isinstance(tensors, dict)
assert list(tensors.keys()) == ['data']
assert sorted(list(tensors['data'].keys())) == [
'input_points', 'output_points']
assert isinstance(tensors['data']['input_points'], torch.Tensor)
assert tensors['data']['input_points'].shape == torch.Size((70, 10))
assert isinstance(tensors['data']['output_points'], torch.Tensor)
assert tensors['data']['output_points'].shape == torch.Size((70, 2))
def test_getitem_multi():
dataset = PinaDatasetFactory(conditions_dict_single_multi,
max_conditions_lengths=max_conditions_lengths_multi,
automatic_batching=False)
tensors = dataset.fetch_from_idx_list([i for i in range(70)])
assert isinstance(tensors, dict)
assert list(tensors.keys()) == ['data_1', 'data_2']
assert sorted(list(tensors['data_1'].keys())) == [
'input_points', 'output_points']
assert isinstance(tensors['data_1']['input_points'], torch.Tensor)
assert tensors['data_1']['input_points'].shape == torch.Size((70, 10))
assert isinstance(tensors['data_1']['output_points'], torch.Tensor)
assert tensors['data_1']['output_points'].shape == torch.Size((70, 2))
assert sorted(list(tensors['data_2'].keys())) == [
'input_points', 'output_points']
assert isinstance(tensors['data_2']['input_points'], torch.Tensor)
assert tensors['data_2']['input_points'].shape == torch.Size((50, 10))
assert isinstance(tensors['data_2']['output_points'], torch.Tensor)
assert tensors['data_2']['output_points'].shape == torch.Size((50, 2))