add OrthogonalBlock to make input orthonormal
This commit is contained in:
committed by
Nicola Demo
parent
0d135f5786
commit
62d50e2455
7
docs/source/_rst/layers/orthogonal.rst
Normal file
7
docs/source/_rst/layers/orthogonal.rst
Normal file
@@ -0,0 +1,7 @@
|
||||
OrthogonalBlock
|
||||
======================
|
||||
.. currentmodule:: pina.model.layers.orthogonal
|
||||
|
||||
.. autoclass:: OrthogonalBlock
|
||||
:members:
|
||||
:show-inheritance:
|
||||
50
pina/model/layers/orthogonal.py
Normal file
50
pina/model/layers/orthogonal.py
Normal file
@@ -0,0 +1,50 @@
|
||||
"""Module for OrthogonalBlock layer, to make the input orthonormal."""
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
class OrthogonalBlock(torch.nn.Module):
|
||||
"""
|
||||
Module to make the input orthonormal.
|
||||
The module takes a tensor of size [N, M] and returns a tensor of
|
||||
size [N, M] where the columns are orthonormal.
|
||||
"""
|
||||
def __init__(self, dim=-1):
|
||||
"""
|
||||
Initialize the OrthogonalBlock module.
|
||||
|
||||
:param int dim: The dimension where to orthogonalize.
|
||||
"""
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
|
||||
def forward(self, X):
|
||||
"""
|
||||
Forward pass of the OrthogonalBlock module using a Gram-Schmidt
|
||||
algorithm.
|
||||
|
||||
:raises Warning: If the dimension is greater than the other dimensions.
|
||||
|
||||
:param torch.Tensor X: The input tensor to orthogonalize.
|
||||
:return: The orthonormal tensor.
|
||||
"""
|
||||
# check dim is less than all the other dimensions
|
||||
if X.shape[self.dim] > min(X.shape):
|
||||
raise Warning("The dimension where to orthogonalize is greater\
|
||||
than the other dimensions")
|
||||
|
||||
result = torch.zeros_like(X)
|
||||
# normalize first basis
|
||||
X_0 = torch.select(X, self.dim, 0)
|
||||
result_0 = torch.select(result, self.dim, 0)
|
||||
result_0 += X_0/torch.norm(X_0)
|
||||
# iterate over the rest of the basis with Gram-Schmidt
|
||||
for i in range(1, X.shape[self.dim]):
|
||||
v = torch.select(X, self.dim, i)
|
||||
for j in range(i):
|
||||
v -= torch.sum(v * torch.select(result, self.dim, j),
|
||||
dim=self.dim, keepdim=True) * torch.select(
|
||||
result, self.dim, j)
|
||||
result_i = torch.select(result, self.dim, i)
|
||||
result_i += v/torch.norm(v)
|
||||
return result
|
||||
33
tests/test_layers/test_orthogonal.py
Normal file
33
tests/test_layers/test_orthogonal.py
Normal file
@@ -0,0 +1,33 @@
|
||||
import torch
|
||||
import pytest
|
||||
from pina.model.layers.orthogonal import OrthogonalBlock
|
||||
|
||||
list_matrices = [
|
||||
torch.randn(10, 3),
|
||||
torch.rand(100, 5),
|
||||
torch.randn(5, 5),
|
||||
]
|
||||
|
||||
list_prohibited_matrices_dim0 = list_matrices[:-1]
|
||||
|
||||
def test_constructor():
|
||||
orth = OrthogonalBlock(1)
|
||||
orth = OrthogonalBlock(0)
|
||||
orth = OrthogonalBlock()
|
||||
|
||||
@pytest.mark.parametrize("V", list_matrices)
|
||||
def test_forward(V):
|
||||
orth = OrthogonalBlock()
|
||||
orth_row = OrthogonalBlock(0)
|
||||
V_orth = orth(V)
|
||||
V_orth_row = orth_row(V.T)
|
||||
assert torch.allclose(V_orth.T @ V_orth, torch.eye(V.shape[1]), atol=1e-6)
|
||||
assert torch.allclose(V_orth_row @ V_orth_row.T, torch.eye(V.shape[1]), atol=1e-6)
|
||||
|
||||
@pytest.mark.parametrize("V", list_prohibited_matrices_dim0)
|
||||
def test_forward_prohibited(V):
|
||||
orth = OrthogonalBlock(0)
|
||||
with pytest.raises(Warning):
|
||||
V_orth = orth(V)
|
||||
assert V.shape[0] > V.shape[1]
|
||||
|
||||
Reference in New Issue
Block a user