minor fix rendering rst tutorial
This commit is contained in:
committed by
Nicola Demo
parent
e514969a43
commit
6c3adfb03d
@@ -34,12 +34,14 @@ networks <https://doi.org/10.1016/j.cma.2021.113938>`__. The
|
||||
one-dimensional Poisson problem we aim to solve is mathematically
|
||||
written as:
|
||||
|
||||
:raw-latex:`\begin{equation}
|
||||
\begin{cases}
|
||||
\Delta u (x) + f(x) = 0 \quad x \in [0,1], \\
|
||||
u(x) = 0 \quad x \in \partial[0,1], \\
|
||||
\end{cases}
|
||||
\end{equation}`
|
||||
.. math::
|
||||
|
||||
\begin{equation}
|
||||
\begin{cases}
|
||||
\Delta u (x) + f(x) = 0 \quad x \in [0,1], \\
|
||||
u(x) = 0 \quad x \in \partial[0,1], \\
|
||||
\end{cases}
|
||||
\end{equation}
|
||||
|
||||
We impose the solution as
|
||||
:math:`u(x) = \sin(2\pi x) + 0.1 \sin(50\pi x)` and obtain the force
|
||||
@@ -95,8 +97,7 @@ scales.
|
||||
|
||||
Below we run a simulation using the ``PINN`` solver and the self
|
||||
adaptive ``SAPINN`` solver, using a
|
||||
```FeedForward`` <https://mathlab.github.io/PINA/_modules/pina/model/feed_forward.html#FeedForward>`__
|
||||
model. We used a ``MultiStepLR`` scheduler to decrease the learning rate
|
||||
``FeedForward`` model. We used a ``MultiStepLR`` scheduler to decrease the learning rate
|
||||
slowly during training (it takes around 2 minutes to run on CPU).
|
||||
|
||||
.. code:: ipython3
|
||||
@@ -130,19 +131,6 @@ slowly during training (it takes around 2 minutes to run on CPU).
|
||||
TPU available: False, using: 0 TPU cores
|
||||
IPU available: False, using: 0 IPUs
|
||||
HPU available: False, using: 0 HPUs
|
||||
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
Epoch 4999: 100%|██████████| 1/1 [00:00<00:00, 150.58it/s, v_num=69, gamma0_loss=2.61e+3, gamma1_loss=2.61e+3, D_loss=409.0, mean_loss=1.88e+3]
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
`Trainer.fit` stopped: `max_epochs=5000` reached.
|
||||
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
Epoch 4999: 100%|██████████| 1/1 [00:00<00:00, 97.66it/s, v_num=69, gamma0_loss=2.61e+3, gamma1_loss=2.61e+3, D_loss=409.0, mean_loss=1.88e+3]
|
||||
|
||||
|
||||
@@ -152,19 +140,6 @@ slowly during training (it takes around 2 minutes to run on CPU).
|
||||
TPU available: False, using: 0 TPU cores
|
||||
IPU available: False, using: 0 IPUs
|
||||
HPU available: False, using: 0 HPUs
|
||||
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
Epoch 4999: 100%|██████████| 1/1 [00:00<00:00, 88.18it/s, v_num=70, gamma0_loss=151.0, gamma1_loss=148.0, D_loss=6.38e+5, mean_loss=2.13e+5]
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
`Trainer.fit` stopped: `max_epochs=5000` reached.
|
||||
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
Epoch 4999: 100%|██████████| 1/1 [00:00<00:00, 65.77it/s, v_num=70, gamma0_loss=151.0, gamma1_loss=148.0, D_loss=6.38e+5, mean_loss=2.13e+5]
|
||||
|
||||
|
||||
@@ -290,19 +265,6 @@ feel free to try also with our PINN variants (``SAPINN``, ``GPINN``,
|
||||
TPU available: False, using: 0 TPU cores
|
||||
IPU available: False, using: 0 IPUs
|
||||
HPU available: False, using: 0 HPUs
|
||||
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
Epoch 4999: 100%|██████████| 1/1 [00:00<00:00, 94.64it/s, v_num=71, gamma0_loss=3.91e-5, gamma1_loss=3.91e-5, D_loss=0.000151, mean_loss=0.000113]
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
`Trainer.fit` stopped: `max_epochs=5000` reached.
|
||||
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
Epoch 4999: 100%|██████████| 1/1 [00:00<00:00, 72.21it/s, v_num=71, gamma0_loss=3.91e-5, gamma1_loss=3.91e-5, D_loss=0.000151, mean_loss=0.000113]
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user