Update of LabelTensor class and fix Simplex domain (#362)

*Implement new methods in LabelTensor and fix operators
This commit is contained in:
Filippo Olivo
2024-10-10 18:26:52 +02:00
committed by Nicola Demo
parent fdb8f65143
commit 7528f6ef74
19 changed files with 551 additions and 217 deletions

View File

@@ -0,0 +1,262 @@
import torch
import pytest
from pina.label_tensor import LabelTensor
data = torch.rand((20, 3))
labels_column = {
1: {
"name": "space",
"dof": ['x', 'y', 'z']
}
}
labels_row = {
0: {
"name": "samples",
"dof": range(20)
}
}
labels_list = ['x', 'y', 'z']
labels_all = labels_column | labels_row
@pytest.mark.parametrize("labels", [labels_column, labels_row, labels_all, labels_list])
def test_constructor(labels):
print(LabelTensor(data, labels))
def test_wrong_constructor():
with pytest.raises(ValueError):
LabelTensor(data, ['a', 'b'])
@pytest.mark.parametrize("labels", [labels_column, labels_all])
@pytest.mark.parametrize("labels_te", ['z', ['z'], {'space': ['z']}])
def test_extract_column(labels, labels_te):
tensor = LabelTensor(data, labels)
new = tensor.extract(labels_te)
assert new.ndim == tensor.ndim
assert new.shape[1] == 1
assert new.shape[0] == 20
assert torch.all(torch.isclose(data[:, 2].reshape(-1, 1), new))
@pytest.mark.parametrize("labels", [labels_row, labels_all])
@pytest.mark.parametrize("labels_te", [{'samples': [2]}])
def test_extract_row(labels, labels_te):
tensor = LabelTensor(data, labels)
new = tensor.extract(labels_te)
assert new.ndim == tensor.ndim
assert new.shape[1] == 3
assert new.shape[0] == 1
assert torch.all(torch.isclose(data[2].reshape(1, -1), new))
@pytest.mark.parametrize("labels_te", [
{'samples': [2], 'space': ['z']},
{'space': 'z', 'samples': 2}
])
def test_extract_2D(labels_te):
labels = labels_all
tensor = LabelTensor(data, labels)
new = tensor.extract(labels_te)
assert new.ndim == tensor.ndim
assert new.shape[1] == 1
assert new.shape[0] == 1
assert torch.all(torch.isclose(data[2,2].reshape(1, 1), new))
def test_extract_3D():
data = torch.rand(20, 3, 4)
labels = {
1: {
"name": "space",
"dof": ['x', 'y', 'z']
},
2: {
"name": "time",
"dof": range(4)
},
}
labels_te = {
'space': ['x', 'z'],
'time': range(1, 4)
}
tensor = LabelTensor(data, labels)
new = tensor.extract(labels_te)
tensor2 = LabelTensor(data, labels)
assert new.ndim == tensor.ndim
assert new.shape[0] == 20
assert new.shape[1] == 2
assert new.shape[2] == 3
assert torch.all(torch.isclose(
data[:, 0::2, 1:4].reshape(20, 2, 3),
new
))
assert tensor2.ndim == tensor.ndim
assert tensor2.shape == tensor.shape
assert tensor.full_labels == tensor2.full_labels
assert new.shape != tensor.shape
def test_concatenation_3D():
data_1 = torch.rand(20, 3, 4)
labels_1 = ['x', 'y', 'z', 'w']
lt1 = LabelTensor(data_1, labels_1)
data_2 = torch.rand(50, 3, 4)
labels_2 = ['x', 'y', 'z', 'w']
lt2 = LabelTensor(data_2, labels_2)
lt_cat = LabelTensor.cat([lt1, lt2])
assert lt_cat.shape == (70, 3, 4)
assert lt_cat.full_labels[0]['dof'] == range(70)
assert lt_cat.full_labels[1]['dof'] == range(3)
assert lt_cat.full_labels[2]['dof'] == ['x', 'y', 'z', 'w']
data_1 = torch.rand(20, 3, 4)
labels_1 = ['x', 'y', 'z', 'w']
lt1 = LabelTensor(data_1, labels_1)
data_2 = torch.rand(20, 2, 4)
labels_2 = ['x', 'y', 'z', 'w']
lt2 = LabelTensor(data_2, labels_2)
lt_cat = LabelTensor.cat([lt1, lt2], dim=1)
assert lt_cat.shape == (20, 5, 4)
assert lt_cat.full_labels[0]['dof'] == range(20)
assert lt_cat.full_labels[1]['dof'] == range(5)
assert lt_cat.full_labels[2]['dof'] == ['x', 'y', 'z', 'w']
data_1 = torch.rand(20, 3, 2)
labels_1 = ['x', 'y']
lt1 = LabelTensor(data_1, labels_1)
data_2 = torch.rand(20, 3, 3)
labels_2 = ['z', 'w', 'a']
lt2 = LabelTensor(data_2, labels_2)
lt_cat = LabelTensor.cat([lt1, lt2], dim=2)
assert lt_cat.shape == (20, 3, 5)
assert lt_cat.full_labels[2]['dof'] == ['x', 'y', 'z', 'w', 'a']
assert lt_cat.full_labels[0]['dof'] == range(20)
assert lt_cat.full_labels[1]['dof'] == range(3)
data_1 = torch.rand(20, 2, 4)
labels_1 = ['x', 'y', 'z', 'w']
lt1 = LabelTensor(data_1, labels_1)
data_2 = torch.rand(20, 3, 4)
labels_2 = ['x', 'y', 'z', 'w']
lt2 = LabelTensor(data_2, labels_2)
with pytest.raises(ValueError):
LabelTensor.cat([lt1, lt2], dim=2)
data_1 = torch.rand(20, 3, 2)
labels_1 = ['x', 'y']
lt1 = LabelTensor(data_1, labels_1)
data_2 = torch.rand(20, 3, 3)
labels_2 = ['x', 'w', 'a']
lt2 = LabelTensor(data_2, labels_2)
lt_cat = LabelTensor.cat([lt1, lt2], dim=2)
assert lt_cat.shape == (20, 3, 5)
assert lt_cat.full_labels[2]['dof'] == range(5)
assert lt_cat.full_labels[0]['dof'] == range(20)
assert lt_cat.full_labels[1]['dof'] == range(3)
def test_summation():
lt1 = LabelTensor(torch.ones(20,3), labels_all)
lt2 = LabelTensor(torch.ones(30,3), ['x', 'y', 'z'])
with pytest.raises(RuntimeError):
LabelTensor.summation([lt1, lt2])
lt1 = LabelTensor(torch.ones(20,3), labels_all)
lt2 = LabelTensor(torch.ones(20,3), labels_all)
lt_sum = LabelTensor.summation([lt1, lt2])
assert lt_sum.ndim == lt_sum.ndim
assert lt_sum.shape[0] == 20
assert lt_sum.shape[1] == 3
assert lt_sum.full_labels == labels_all
assert torch.eq(lt_sum.tensor, torch.ones(20,3)*2).all()
lt1 = LabelTensor(torch.ones(20,3), labels_all)
lt2 = LabelTensor(torch.ones(20,3), labels_all)
lt3 = LabelTensor(torch.zeros(20, 3), labels_all)
lt_sum = LabelTensor.summation([lt1, lt2, lt3])
assert lt_sum.ndim == lt_sum.ndim
assert lt_sum.shape[0] == 20
assert lt_sum.shape[1] == 3
assert lt_sum.full_labels == labels_all
assert torch.eq(lt_sum.tensor, torch.ones(20,3)*2).all()
def test_append_3D():
data_1 = torch.rand(20, 3, 2)
labels_1 = ['x', 'y']
lt1 = LabelTensor(data_1, labels_1)
data_2 = torch.rand(20, 3, 2)
labels_2 = ['z', 'w']
lt2 = LabelTensor(data_2, labels_2)
lt1 = lt1.append(lt2)
assert lt1.shape == (20, 3, 4)
assert lt1.full_labels[0]['dof'] == range(20)
assert lt1.full_labels[1]['dof'] == range(3)
assert lt1.full_labels[2]['dof'] == ['x', 'y', 'z', 'w']
def test_append_2D():
data_1 = torch.rand(20, 2)
labels_1 = ['x', 'y']
lt1 = LabelTensor(data_1, labels_1)
data_2 = torch.rand(20, 2)
labels_2 = ['z', 'w']
lt2 = LabelTensor(data_2, labels_2)
lt1 = lt1.append(lt2, mode='cross')
assert lt1.shape == (400, 4)
assert lt1.full_labels[0]['dof'] == range(400)
assert lt1.full_labels[1]['dof'] == ['x', 'y', 'z', 'w']
def test_vstack_3D():
data_1 = torch.rand(20, 3, 2)
labels_1 = {1:{'dof': ['a', 'b', 'c'], 'name': 'first'}, 2: {'dof': ['x', 'y'], 'name': 'second'}}
lt1 = LabelTensor(data_1, labels_1)
data_2 = torch.rand(20, 3, 2)
labels_1 = {1:{'dof': ['a', 'b', 'c'], 'name': 'first'}, 2: {'dof': ['x', 'y'], 'name': 'second'}}
lt2 = LabelTensor(data_2, labels_1)
lt_stacked = LabelTensor.vstack([lt1, lt2])
assert lt_stacked.shape == (40, 3, 2)
assert lt_stacked.full_labels[0]['dof'] == range(40)
assert lt_stacked.full_labels[1]['dof'] == ['a', 'b', 'c']
assert lt_stacked.full_labels[2]['dof'] == ['x', 'y']
assert lt_stacked.full_labels[1]['name'] == 'first'
assert lt_stacked.full_labels[2]['name'] == 'second'
def test_vstack_2D():
data_1 = torch.rand(20, 2)
labels_1 = { 1: {'dof': ['x', 'y'], 'name': 'second'}}
lt1 = LabelTensor(data_1, labels_1)
data_2 = torch.rand(20, 2)
labels_1 = { 1: {'dof': ['x', 'y'], 'name': 'second'}}
lt2 = LabelTensor(data_2, labels_1)
lt_stacked = LabelTensor.vstack([lt1, lt2])
assert lt_stacked.shape == (40, 2)
assert lt_stacked.full_labels[0]['dof'] == range(40)
assert lt_stacked.full_labels[1]['dof'] == ['x', 'y']
assert lt_stacked.full_labels[0]['name'] == 0
assert lt_stacked.full_labels[1]['name'] == 'second'
def test_sorting():
data = torch.ones(20, 5)
data[:,0] = data[:,0]*4
data[:,1] = data[:,1]*2
data[:,2] = data[:,2]
data[:,3] = data[:,3]*5
data[:,4] = data[:,4]*3
labels = ['d', 'b', 'a', 'e', 'c']
lt_data = LabelTensor(data, labels)
lt_sorted = LabelTensor.sort_labels(lt_data)
assert lt_sorted.shape == (20,5)
assert lt_sorted.labels == ['a', 'b', 'c', 'd', 'e']
assert torch.eq(lt_sorted.tensor[:,0], torch.ones(20) * 1).all()
assert torch.eq(lt_sorted.tensor[:,1], torch.ones(20) * 2).all()
assert torch.eq(lt_sorted.tensor[:,2], torch.ones(20) * 3).all()
assert torch.eq(lt_sorted.tensor[:,3], torch.ones(20) * 4).all()
assert torch.eq(lt_sorted.tensor[:,4], torch.ones(20) * 5).all()
data = torch.ones(20, 4, 5)
data[:,0,:] = data[:,0]*4
data[:,1,:] = data[:,1]*2
data[:,2,:] = data[:,2]
data[:,3,:] = data[:,3]*3
labels = {1: {'dof': ['d', 'b', 'a', 'c'], 'name': 1}}
lt_data = LabelTensor(data, labels)
lt_sorted = LabelTensor.sort_labels(lt_data, dim=1)
assert lt_sorted.shape == (20,4, 5)
assert lt_sorted.full_labels[1]['dof'] == ['a', 'b', 'c', 'd']
assert torch.eq(lt_sorted.tensor[:,0,:], torch.ones(20,5) * 1).all()
assert torch.eq(lt_sorted.tensor[:,1,:], torch.ones(20,5) * 2).all()
assert torch.eq(lt_sorted.tensor[:,2,:], torch.ones(20,5) * 3).all()
assert torch.eq(lt_sorted.tensor[:,3,:], torch.ones(20,5) * 4).all()

View File

@@ -0,0 +1,117 @@
import torch
import pytest
from pina import LabelTensor
data = torch.rand((20, 3))
labels = ['a', 'b', 'c']
def test_constructor():
LabelTensor(data, labels)
def test_wrong_constructor():
with pytest.raises(ValueError):
LabelTensor(data, ['a', 'b'])
def test_labels():
tensor = LabelTensor(data, labels)
assert isinstance(tensor, torch.Tensor)
assert tensor.labels == labels
with pytest.raises(ValueError):
tensor.labels = labels[:-1]
def test_extract():
label_to_extract = ['a', 'c']
tensor = LabelTensor(data, labels)
new = tensor.extract(label_to_extract)
assert new.labels == label_to_extract
assert new.shape[1] == len(label_to_extract)
assert torch.all(torch.isclose(data[:, 0::2], new))
def test_extract_onelabel():
label_to_extract = ['a']
tensor = LabelTensor(data, labels)
new = tensor.extract(label_to_extract)
assert new.ndim == 2
assert new.labels == label_to_extract
assert new.shape[1] == len(label_to_extract)
assert torch.all(torch.isclose(data[:, 0].reshape(-1, 1), new))
def test_wrong_extract():
label_to_extract = ['a', 'cc']
tensor = LabelTensor(data, labels)
with pytest.raises(ValueError):
tensor.extract(label_to_extract)
def test_extract_order():
label_to_extract = ['c', 'a']
tensor = LabelTensor(data, labels)
new = tensor.extract(label_to_extract)
expected = torch.cat(
(data[:, 2].reshape(-1, 1), data[:, 0].reshape(-1, 1)),
dim=1)
assert new.labels == label_to_extract
assert new.shape[1] == len(label_to_extract)
assert torch.all(torch.isclose(expected, new))
def test_merge():
tensor = LabelTensor(data, labels)
tensor_a = tensor.extract('a')
tensor_b = tensor.extract('b')
tensor_c = tensor.extract('c')
tensor_bc = tensor_b.append(tensor_c)
assert torch.allclose(tensor_bc, tensor.extract(['b', 'c']))
def test_merge2():
tensor = LabelTensor(data, labels)
tensor_b = tensor.extract('b')
tensor_c = tensor.extract('c')
tensor_bc = tensor_b.append(tensor_c)
assert torch.allclose(tensor_bc, tensor.extract(['b', 'c']))
def test_getitem():
tensor = LabelTensor(data, labels)
tensor_view = tensor['a']
assert tensor_view.labels == ['a']
assert torch.allclose(tensor_view.flatten(), data[:, 0])
tensor_view = tensor['a', 'c']
assert tensor_view.labels == ['a', 'c']
assert torch.allclose(tensor_view, data[:, 0::2])
def test_getitem2():
tensor = LabelTensor(data, labels)
tensor_view = tensor[:5]
assert tensor_view.labels == labels
assert torch.allclose(tensor_view, data[:5])
idx = torch.randperm(tensor.shape[0])
tensor_view = tensor[idx]
assert tensor_view.labels == labels
def test_slice():
tensor = LabelTensor(data, labels)
tensor_view = tensor[:5, :2]
assert tensor_view.labels == labels[:2]
assert torch.allclose(tensor_view, data[:5, :2])
tensor_view2 = tensor[3]
assert tensor_view2.labels == labels
assert torch.allclose(tensor_view2, data[3])
tensor_view3 = tensor[:, 2]
assert tensor_view3.labels == labels[2]
assert torch.allclose(tensor_view3, data[:, 2].reshape(-1, 1))